Example showing how to use multigrid and compare with an analytic solution, using the method of manufactured solutions. A standard 5-point Laplacian is used in cylindrical coordinates.
12 integer,
parameter :: box_size = 8
13 integer,
parameter :: n_iterations = 10
20 type(ref_info_t) :: ref_info
22 real(dp) :: residu(2), anal_err(2)
23 character(len=100) :: fname
26 integer :: count_rate,t_start, t_end
28 print *,
"Running poisson_cyl"
29 print *,
"Number of threads", af_get_max_threads()
32 call gauss_init(gs, [1.0_dp], [0.2_dp], &
33 reshape([0.0_dp, 0.5_dp], [2,1]))
35 call af_add_cc_variable(tree,
"phi", ix=i_phi)
36 call af_add_cc_variable(tree,
"rhs", ix=i_rhs)
37 call af_add_cc_variable(tree,
"err", ix=i_err)
38 call af_add_cc_variable(tree,
"tmp", ix=i_tmp)
44 [box_size, box_size], &
47 call af_print_info(tree)
49 call system_clock(t_start, count_rate)
52 call af_loop_box(tree, set_init_cond)
55 call af_adjust_refinement(tree, ref_routine, ref_info)
58 if (ref_info%n_add == 0)
exit
60 call system_clock(t_end, count_rate)
62 write(*,
"(A,Es10.3,A)")
" Wall-clock time generating AMR grid: ", &
63 (t_end-t_start) / real(count_rate,dp),
" seconds"
65 call af_print_info(tree)
71 mg%sides_bc => sides_bc
77 call mg_init(tree, mg)
79 print *,
"Multigrid iteration | max residual | max error"
80 call system_clock(t_start, count_rate)
82 do mg_iter = 1, n_iterations
86 call mg_fas_fmg(tree, mg, .true., mg_iter>1)
89 call af_loop_box(tree, set_err)
92 call af_tree_min_cc(tree, i_tmp, residu(1))
93 call af_tree_max_cc(tree, i_tmp, residu(2))
94 call af_tree_min_cc(tree, i_err, anal_err(1))
95 call af_tree_max_cc(tree, i_err, anal_err(2))
96 write(*,
"(I8,2Es14.5)") mg_iter, maxval(abs(residu)), &
99 write(fname,
"(A,I0)")
"output/poisson_cyl_", mg_iter
100 call af_write_silo(tree, trim(fname))
102 call system_clock(t_end, count_rate)
104 write(*,
"(A,I0,A,E10.3,A)") &
105 " Wall-clock time after ", n_iterations, &
106 " iterations: ", (t_end-t_start) / real(count_rate, dp), &
111 call af_destroy(tree)
117 subroutine ref_routine(box, cell_flags)
118 type(box_t),
intent(in) :: box
119 integer,
intent(out) :: cell_flags(box%n_cell, box%n_cell)
124 dr2 = maxval(box%dr)**2
129 crv = dr2 * abs(box%cc(i, j, i_rhs))
132 if (crv > 5.0e-4_dp)
then
133 cell_flags(i, j) = af_do_ref
135 cell_flags(i, j) = af_keep_ref
139 end subroutine ref_routine
142 subroutine set_init_cond(box)
143 type(box_t),
intent(inout) :: box
151 rz = af_r_cc(box, [i,j])
152 box%cc(i, j, i_rhs) = gauss_laplacian_cyl(gs, rz)
155 end subroutine set_init_cond
158 subroutine set_err(box)
159 type(box_t),
intent(inout) :: box
166 rz = af_r_cc(box, [i,j])
167 box%cc(i, j, i_err) = box%cc(i, j, i_phi) - gauss_value(gs, rz)
170 end subroutine set_err
173 subroutine sides_bc(box, nb, iv, coords, bc_val, bc_type)
174 type(box_t),
intent(in) :: box
175 integer,
intent(in) :: nb
176 integer,
intent(in) :: iv
177 real(dp),
intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
178 real(dp),
intent(out) :: bc_val(box%n_cell**(NDIM-1))
179 integer,
intent(out) :: bc_type
182 if (nb == af_neighb_lowx)
then
184 bc_type = af_bc_neumann
188 bc_type = af_bc_dirichlet
191 do n = 1, box%n_cell**(ndim-1)
192 bc_val(n) = gauss_value(gs, coords(:, n))
195 end subroutine sides_bc
197 end program poisson_cyl
Module which contains all Afivo modules, so that a user does not have to include them separately.
This module can be used to construct solutions consisting of one or more Gaussians.