Afivo  0.3
poisson_cyl.f90

Example showing how to use multigrid and compare with an analytic solution, using the method of manufactured solutions. A standard 5-point Laplacian is used in cylindrical coordinates.

1 !> \example poisson_cyl.f90
2 !>
3 !> Example showing how to use multigrid and compare with an analytic solution,
4 !> using the method of manufactured solutions. A standard 5-point Laplacian is
5 !> used in cylindrical coordinates.
6 program poisson_cyl
7  use m_af_all
8  use m_gaussians
9 
10  implicit none
11 
12  integer, parameter :: box_size = 8
13  integer, parameter :: n_iterations = 10
14  integer :: i_phi
15  integer :: i_rhs
16  integer :: i_err
17  integer :: i_tmp
18 
19  type(af_t) :: tree
20  type(ref_info_t) :: ref_info
21  integer :: mg_iter
22  real(dp) :: residu(2), anal_err(2)
23  character(len=100) :: fname
24  type(mg_t) :: mg
25  type(gauss_t) :: gs
26  integer :: count_rate,t_start, t_end
27 
28  print *, "Running poisson_cyl"
29  print *, "Number of threads", af_get_max_threads()
30 
31  ! The manufactured solution exists of two Gaussians, which are stored in gs
32  call gauss_init(gs, [1.0_dp], [0.2_dp], &
33  reshape([0.0_dp, 0.5_dp], [2,1]))
34 
35  call af_add_cc_variable(tree, "phi", ix=i_phi)
36  call af_add_cc_variable(tree, "rhs", ix=i_rhs)
37  call af_add_cc_variable(tree, "err", ix=i_err)
38  call af_add_cc_variable(tree, "tmp", ix=i_tmp)
39 
40  ! Initialize tree
41  call af_init(tree, & ! Tree to initialize
42  box_size, & ! A box contains box_size**DIM cells
43  [1.0_dp, 1.0_dp], &
44  [box_size, box_size], &
45  coord=af_cyl) ! Cylindrical coordinates
46 
47  call af_print_info(tree)
48 
49  call system_clock(t_start, count_rate)
50  do
51  ! For each box, set the initial conditions
52  call af_loop_box(tree, set_init_cond)
53 
54  ! This updates the refinement of the tree, by at most one level per call.
55  call af_adjust_refinement(tree, ref_routine, ref_info)
56 
57  ! If no new boxes have been added, exit the loop
58  if (ref_info%n_add == 0) exit
59  end do
60  call system_clock(t_end, count_rate)
61 
62  write(*,"(A,Es10.3,A)") " Wall-clock time generating AMR grid: ", &
63  (t_end-t_start) / real(count_rate,dp), " seconds"
64 
65  call af_print_info(tree)
66 
67  ! Set the multigrid options.
68  mg%i_phi = i_phi ! Solution variable
69  mg%i_rhs = i_rhs ! Right-hand side variable
70  mg%i_tmp = i_tmp ! Variable for temporary space
71  mg%sides_bc => sides_bc ! Method for boundary conditions Because we use
72 
73  ! Initialize the multigrid options. This performs some basics checks and sets
74  ! default values where necessary.
75  ! This routine does not initialize the multigrid variables i_phi, i_rhs
76  ! and i_tmp. These variables will be initialized at the first call of mg_fas_fmg
77  call mg_init(tree, mg)
78 
79  print *, "Multigrid iteration | max residual | max error"
80  call system_clock(t_start, count_rate)
81 
82  do mg_iter = 1, n_iterations
83  ! Perform a FAS-FMG cycle (full approximation scheme, full multigrid). The
84  ! third argument controls whether the residual is stored in i_tmp. The
85  ! fourth argument controls whether to improve the current solution.
86  call mg_fas_fmg(tree, mg, .true., mg_iter>1)
87 
88  ! Compute the error compared to the analytic solution
89  call af_loop_box(tree, set_err)
90 
91  ! Determine the minimum and maximum residual and error
92  call af_tree_min_cc(tree, i_tmp, residu(1))
93  call af_tree_max_cc(tree, i_tmp, residu(2))
94  call af_tree_min_cc(tree, i_err, anal_err(1))
95  call af_tree_max_cc(tree, i_err, anal_err(2))
96  write(*,"(I8,2Es14.5)") mg_iter, maxval(abs(residu)), &
97  maxval(abs(anal_err))
98 
99  write(fname, "(A,I0)") "output/poisson_cyl_", mg_iter
100  call af_write_silo(tree, trim(fname))
101  end do
102  call system_clock(t_end, count_rate)
103 
104  write(*, "(A,I0,A,E10.3,A)") &
105  " Wall-clock time after ", n_iterations, &
106  " iterations: ", (t_end-t_start) / real(count_rate, dp), &
107  " seconds"
108 
109  ! This call is not really necessary here, but cleaning up the data in a tree
110  ! is important if your program continues with other tasks.
111  call af_destroy(tree)
112  call mg_destroy(mg)
113 
114 contains
115 
116  ! Set refinement flags for box
117  subroutine ref_routine(box, cell_flags)
118  type(box_t), intent(in) :: box
119  integer, intent(out) :: cell_flags(box%n_cell, box%n_cell)
120  integer :: i, j, nc
121  real(dp) :: crv, dr2
122 
123  nc = box%n_cell
124  dr2 = maxval(box%dr)**2
125 
126  ! Compute the "curvature" in phi
127  do j = 1, nc
128  do i = 1, nc
129  crv = dr2 * abs(box%cc(i, j, i_rhs))
130 
131  ! And refine if it exceeds a threshold
132  if (crv > 5.0e-4_dp) then
133  cell_flags(i, j) = af_do_ref
134  else
135  cell_flags(i, j) = af_keep_ref
136  end if
137  end do
138  end do
139  end subroutine ref_routine
140 
141  ! This routine sets the initial conditions for each box
142  subroutine set_init_cond(box)
143  type(box_t), intent(inout) :: box
144  integer :: i, j, nc
145  real(dp) :: rz(2)
146 
147  nc = box%n_cell
148 
149  do j = 0, nc+1
150  do i = 0, nc+1
151  rz = af_r_cc(box, [i,j])
152  box%cc(i, j, i_rhs) = gauss_laplacian_cyl(gs, rz)
153  end do
154  end do
155  end subroutine set_init_cond
156 
157  ! Compute error compared to the analytic solution
158  subroutine set_err(box)
159  type(box_t), intent(inout) :: box
160  integer :: i, j, nc
161  real(dp) :: rz(2)
162 
163  nc = box%n_cell
164  do j = 1, nc
165  do i = 1, nc
166  rz = af_r_cc(box, [i,j])
167  box%cc(i, j, i_err) = box%cc(i, j, i_phi) - gauss_value(gs, rz)
168  end do
169  end do
170  end subroutine set_err
171 
172  ! This routine sets boundary conditions for a box
173  subroutine sides_bc(box, nb, iv, coords, bc_val, bc_type)
174  type(box_t), intent(in) :: box
175  integer, intent(in) :: nb
176  integer, intent(in) :: iv
177  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
178  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
179  integer, intent(out) :: bc_type
180  integer :: n
181 
182  if (nb == af_neighb_lowx) then
183  ! On the axis, apply Neumann zero conditions
184  bc_type = af_bc_neumann
185  bc_val = 0.0_dp
186  else
187  ! We use dirichlet boundary conditions
188  bc_type = af_bc_dirichlet
189 
190  ! Below the solution is specified in the approriate ghost cells
191  do n = 1, box%n_cell**(ndim-1)
192  bc_val(n) = gauss_value(gs, coords(:, n))
193  end do
194  end if
195  end subroutine sides_bc
196 
197 end program poisson_cyl
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3
This module can be used to construct solutions consisting of one or more Gaussians.
Definition: m_gaussians.f90:3