Afivo  0.3
compressible_flow_wall.f90

Example with compressible flow interacting with a solid wall

1 #include "../src/cpp_macros.h"
2 !> \example compressible_flow_wall.f90
3 !>
4 !> Example with compressible flow interacting with a solid wall
5 program compressible_flow_wall
6  use m_af_all
7  implicit none
8 
9  integer, parameter :: n_vars = 2+ndim
10  integer, parameter :: box_size = 8
11 
12  ! Indices defining the order of the flux variables
13  integer, parameter :: i_rho = 1
14  integer, parameter :: i_mom(NDIM) = [2, 3]
15  integer, parameter :: i_e = 4
16  integer :: i_lsf
17 
18  real(dp), parameter :: k_boltzmann = 1.380649e-23_dp ! J/K
19  real(dp), parameter :: dalton = 1.66053906660e-27_dp ! kg
20 
21  real(dp) :: euler_gamma = 1.4_dp
22  real(dp) :: cfl_number = 0.5_dp
23  integer :: time_integrator = af_heuns_method
24  real(dp) :: rho_0, u_0, p_0, T_0, sound_speed, mach_number
25  real(dp) :: molecular_mass, domain_size(NDIM)
26  real(dp) :: wedge_angle, wedge_normal(2)
27  integer :: variables(n_vars)
28  integer :: cc_rho, cc_mom(2), cc_e
29  integer :: fluxes(n_vars)
30  integer :: grid_size(NDIM)
31  integer :: iteration
32  real(dp) :: u_init(1, n_vars)
33  type(af_t) :: tree
34  real(dp) :: dt, dt_lim, time, end_time, dt_output
35  character(len=100) :: fname
36  integer :: n, output_cnt
37  logical :: use_amr
38 
39  character(len=10) :: var_names(n_vars)
40 
41  ! This test case with supersonic flow past a wedge is described in
42  ! https://doi.org/10.3929/ethz-a-005575219 (master thesis)
43 
44  domain_size = [0.45_dp, 0.3_dp] ! m
45  grid_size = [12, 8] * box_size
46  end_time = 3e-3_dp ! s
47  euler_gamma = 1.4_dp
48  molecular_mass = 28.9_dp ! daltons
49  p_0 = 101.35e3_dp ! Pa
50  t_0 = 288.9_dp ! K
51  wedge_angle = 15.0_dp * acos(-1.0_dp) / 180.0_dp
52  wedge_normal = [-sin(wedge_angle), cos(wedge_angle)]
53 
54  ! gas density in kg/m3
55  rho_0 = p_0 * molecular_mass * dalton / (k_boltzmann * t_0)
56  sound_speed = sqrt(euler_gamma * p_0 / rho_0) ! m/s
57  mach_number = 2.5_dp
58  u_0 = mach_number * sound_speed ! m/s
59 
60  u_init(1, :) = [rho_0, u_0, 0.0_dp, p_0]
61  call to_conservative(1, n_vars, u_init)
62 
63  var_names(i_rho) = "rho"
64  var_names(i_mom) = ["mom_x", "mom_y"]
65  var_names(i_e) = "E"
66 
67  do n = 1, n_vars
68  call af_add_cc_variable(tree, var_names(n), ix=variables(n), n_copies=2)
69  call af_add_fc_variable(tree, "flux", ix=fluxes(n))
70  end do
71 
72  call af_set_cc_methods(tree, variables(i_rho), bc_gas_rho)
73  call af_set_cc_methods(tree, variables(i_mom(1)), bc_gas_mom_x)
74  call af_set_cc_methods(tree, variables(i_mom(2)), bc_gas_mom_y)
75  call af_set_cc_methods(tree, variables(i_e), bc_gas_e)
76 
77  call af_add_cc_variable(tree, "lsf", ix=i_lsf)
78  call af_set_cc_methods(tree, i_lsf, funcval=set_lsf_box)
79 
80  cc_rho = variables(i_rho)
81  cc_mom = variables(i_mom)
82  cc_e = variables(i_e)
83 
84  use_amr = .false.
85 
86  call af_init(tree, box_size, domain_size, grid_size)
87  call af_loop_box(tree, set_init_conds)
88  call af_gc_tree(tree, variables)
89 
90  time = 0.0_dp
91  dt = 0.0_dp ! Start from zero time step
92  output_cnt = 0
93  iteration = 0
94  dt_output = end_time / 100
95 
96  do
97  iteration = iteration + 1
98  if (output_cnt * dt_output <= time) then
99  write(fname, "(A,I0)") "output/compressible_flow_wall_" &
100  // dimname // "_", output_cnt
101  call af_write_silo(tree, trim(fname), output_cnt, time, &
102  add_vars = write_primitives, add_names=["xVel","yVel","pres"])
103  output_cnt = output_cnt + 1
104  end if
105 
106  call af_advance(tree, dt, dt_lim, time, variables, &
107  time_integrator, forward_euler)
108  dt = cfl_number * dt_lim
109  if (time > end_time) exit
110  end do
111 
112  print *, "Number of time steps: ", iteration
113  print *, "Number of grid cells: ", af_num_leaves_used(tree) * box_size**ndim
114  call af_destroy(tree)
115 
116 contains
117 
118  subroutine forward_euler(tree, dt, dt_stiff, dt_lim, time, s_deriv, n_prev, &
119  s_prev, w_prev, s_out, i_step, n_steps)
120  type(af_t), intent(inout) :: tree
121  real(dp), intent(in) :: dt
122  real(dp), intent(in) :: dt_stiff !< Time step for stiff terms
123  real(dp), intent(inout) :: dt_lim
124  real(dp), intent(in) :: time
125  integer, intent(in) :: s_deriv
126  integer, intent(in) :: n_prev !< Number of previous states
127  integer, intent(in) :: s_prev(n_prev) !< Previous states
128  real(dp), intent(in) :: w_prev(n_prev) !< Weights of previous states
129  integer, intent(in) :: s_out
130  integer, intent(in) :: i_step, n_steps
131  real(dp) :: dummy_dt(0)
132 
133  call flux_generic_tree(tree, n_vars, variables, s_deriv, fluxes, dt_lim, &
134  max_wavespeed, get_fluxes, flux_dummy_modify, line_modify, &
135  to_primitive, to_conservative, af_limiter_vanleer_t)
136  call flux_update_densities(tree, dt, n_vars, variables, n_vars, variables, fluxes, &
137  s_deriv, n_prev, s_prev, w_prev, s_out, flux_dummy_source, 0, dummy_dt, &
138  set_box_mask)
139  end subroutine forward_euler
140 
141  !> Set a mask to true where the solution should be updated
142  subroutine set_box_mask(box, mask)
143  type(box_t), intent(in) :: box
144  logical, intent(out) :: mask(DTIMES(box%n_cell))
145  integer :: nc
146 
147  nc = box%n_cell
148  mask = (box%cc(dtimes(1:nc), i_lsf) > 0.0_dp)
149  end subroutine set_box_mask
150 
151  subroutine set_init_conds(box)
152  type(box_t), intent(inout) :: box
153  integer :: IJK, nc
154 
155  nc = box%n_cell
156  do kji_do(0, nc+1)
157  box%cc(ijk, variables) = u_init(1, :)
158  if (box%cc(ijk, i_lsf) <= 0) then
159  box%cc(ijk, i_mom) = 0.0_dp
160  end if
161  end do; close_do
162  end subroutine set_init_conds
163 
164  !> Convert variables to primitive form
165  subroutine to_primitive(n_values, n_vars, u)
166  integer, intent(in) :: n_values, n_vars
167  real(dp), intent(inout) :: u(n_values, n_vars)
168 
169  u(:, i_mom(1)) = u(:, i_mom(1))/u(:, i_rho)
170  u(:, i_mom(2)) = u(:, i_mom(2))/u(:, i_rho)
171  u(:, i_e) = (euler_gamma-1.0_dp) * (u(:, i_e) - &
172  0.5_dp*u(:, i_rho)* sum(u(:, i_mom(:))**2, dim=2))
173  end subroutine to_primitive
174 
175  !> Convert variables to conservative form
176  subroutine to_conservative(n_values, n_vars, u)
177  integer, intent(in) :: n_values, n_vars
178  real(dp), intent(inout) :: u(n_values, n_vars)
179  real(dp) :: kin_en(n_values)
180  real(dp) :: inv_fac
181  integer :: i
182 
183  ! Compute kinetic energy (0.5 * rho * velocity^2)
184  kin_en = 0.5_dp * u(:, i_rho) * sum(u(:, i_mom(:))**2, dim=2)
185 
186  ! Compute energy from pressure and kinetic energy
187  inv_fac = 1/(euler_gamma - 1.0_dp)
188  u(:, i_e) = u(:, i_e) * inv_fac + kin_en
189 
190  ! Compute momentum from density and velocity components
191  do i = 1, ndim
192  u(:, i_mom(i)) = u(:, i_rho) * u(:, i_mom(i))
193  end do
194  end subroutine to_conservative
195 
196  !> Get maximal wave speed
197  subroutine max_wavespeed(n_values, n_var, flux_dim, u, w)
198  integer, intent(in) :: n_values !< Number of cell faces
199  integer, intent(in) :: n_var !< Number of variables
200  integer, intent(in) :: flux_dim !< In which dimension fluxes are computed
201  real(dp), intent(in) :: u(n_values, n_var) !< Primitive variables
202  real(dp), intent(out) :: w(n_values) !< Maximum speed
203  real(dp) :: sound_speeds(n_values)
204 
205  sound_speeds = sqrt(euler_gamma * u(:, i_e) / u(:, i_rho))
206  w = sound_speeds + abs(u(:, i_mom(flux_dim)))
207  end subroutine max_wavespeed
208 
209  !> Compute fluxes from variables in primitive form
210  subroutine get_fluxes(n_values, n_var, flux_dim, u, flux, box, line_ix, s_deriv)
211  integer, intent(in) :: n_values !< Number of cell faces
212  integer, intent(in) :: n_var !< Number of variables
213  integer, intent(in) :: flux_dim !< In which dimension fluxes are computed
214  real(dp), intent(in) :: u(n_values, n_var)
215  real(dp), intent(out) :: flux(n_values, n_var)
216  type(box_t), intent(in) :: box
217  integer, intent(in) :: line_ix(NDIM-1)
218  integer, intent(in) :: s_deriv
219  real(dp) :: E(n_values), inv_fac
220  integer :: i
221 
222  ! Compute left and right flux for conservative variables from the primitive
223  ! reconstructed values.
224 
225  ! Density flux
226  flux(:, i_rho) = u(:, i_rho) * u(:, i_mom(flux_dim))
227 
228  ! Momentum flux
229  do i = 1, ndim
230  flux(:, i_mom(i)) = u(:, i_rho) * &
231  u(:, i_mom(i)) * u(:, i_mom(flux_dim))
232  end do
233 
234  ! Add pressure term
235  flux(:, i_mom(flux_dim)) = flux(:, i_mom(flux_dim)) + u(:, i_e)
236 
237  ! Compute energy
238  inv_fac = 1/(euler_gamma-1.0_dp)
239  e = u(:, i_e) * inv_fac + 0.5_dp * u(:, i_rho) * &
240  sum(u(:, i_mom(:))**2, dim=2)
241 
242  ! Energy flux
243  flux(:, i_e) = u(:, i_mom(flux_dim)) * (e + u(:, i_e))
244 
245  end subroutine get_fluxes
246 
247  !> Modify line data to approximate a slip boundary condition
248  subroutine line_modify(n_cc, n_var, cc_line, flux_dim, box, line_ix, s_deriv)
249  integer, intent(in) :: n_cc !< Number of cell centers
250  integer, intent(in) :: n_var !< Number of variables
251  real(dp), intent(inout) :: cc_line(-1:n_cc-2, n_var) !< Line values to modify
252  integer, intent(in) :: flux_dim !< In which dimension fluxes are computed
253  type(box_t), intent(in) :: box !< Current box
254  integer, intent(in) :: line_ix(NDIM-1) !< Index of line for dim /= flux_dim
255  integer, intent(in) :: s_deriv !< State to compute derivatives from
256 
257  real(dp) :: lsf(0:box%n_cell+1)
258  real(dp) :: mom(2), mom_par(2), mom_perp(2)
259  integer :: i
260 
261  ! Get level set function along the line of the flux computation
262  call flux_get_line_1cc(box, i_lsf, flux_dim, line_ix, lsf)
263 
264  if (all(lsf > 0)) return ! no boundary
265 
266  do i = 0, box%n_cell
267  if (lsf(i) * lsf(i+1) <= 0) then
268  ! There is an interface
269  if (lsf(i) > 0) then
270  cc_line(i+1, :) = cc_line(i, :)
271  cc_line(i+2, :) = cc_line(i-1, :)
272 
273  ! Project momentum onto a component parallel and perpendicular to
274  ! the boundary. The parallel momentum is copied, but for the
275  ! perpendicular moment a negative sign is used so that the
276  ! "average" perpendicular momentum is zero.
277  ! TODO: use gradient of lsf, take distance into account?
278  mom = cc_line(i, i_mom)
279  mom_perp = dot_product(mom, wedge_normal) * wedge_normal
280  mom_par = mom - mom_perp
281  cc_line(i+1, i_mom) = mom_par - mom_perp
282 
283  mom = cc_line(i-1, i_mom)
284  mom_perp = dot_product(mom, wedge_normal) * wedge_normal
285  mom_par = mom - mom_perp
286  cc_line(i+2, i_mom) = mom_par - mom_perp
287  else
288  cc_line(i, :) = cc_line(i+1, :)
289  cc_line(i-1, :) = cc_line(i+2, :)
290 
291  mom = cc_line(i+1, i_mom)
292  mom_perp = dot_product(mom, wedge_normal) * wedge_normal
293  mom_par = mom - mom_perp
294  cc_line(i, i_mom) = mom_par - mom_perp
295 
296  mom = cc_line(i+2, i_mom)
297  mom_perp = dot_product(mom, wedge_normal) * wedge_normal
298  mom_par = mom - mom_perp
299  cc_line(i-1, i_mom) = mom_par - mom_perp
300  end if
301  end if
302  end do
303 
304  end subroutine line_modify
305 
306  !> Write primitive variables to output
307  subroutine write_primitives(box, new_vars, n_var)
308  type(box_t), intent(in) :: box
309  integer, intent(in) :: n_var
310  real(dp) :: new_vars(DTIMES(0:box%n_cell+1),n_var)
311 
312  ! X Velocity
313  new_vars(dtimes(:), 1) = box%cc(dtimes(:), cc_mom(1))/box%cc(dtimes(:), cc_rho)
314  ! Y Velocity
315  new_vars(dtimes(:), 2) = box%cc(dtimes(:), cc_mom(2))/box%cc(dtimes(:), cc_rho)
316  ! Pressure
317  new_vars(dtimes(:), 3) = (euler_gamma-1.0_dp)*(box%cc(dtimes(:), cc_e) - &
318  sum(box%cc(dtimes(:), cc_mom(:))**2, dim=ndim+1) &
319  /(2.0_dp*box%cc(dtimes(:), cc_rho)))
320  end subroutine write_primitives
321 
322  !> Boundary conditions for gas density
323  subroutine bc_gas_rho(box, nb, iv, coords, bc_val, bc_type)
324  type(box_t), intent(in) :: box
325  integer, intent(in) :: nb
326  integer, intent(in) :: iv
327  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
328  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
329  integer, intent(out) :: bc_type
330 
331  if (nb == af_neighb_lowx) then
332  bc_type = af_bc_dirichlet
333  bc_val = u_init(1, i_rho)
334  else
335  call af_bc_neumann_zero(box, nb, iv, coords, bc_val, bc_type)
336  end if
337  end subroutine bc_gas_rho
338 
339  !> Boundary conditions for x-momentum
340  subroutine bc_gas_mom_x(box, nb, iv, coords, bc_val, bc_type)
341  type(box_t), intent(in) :: box
342  integer, intent(in) :: nb
343  integer, intent(in) :: iv
344  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
345  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
346  integer, intent(out) :: bc_type
347 
348  if (nb == af_neighb_lowx) then
349  bc_type = af_bc_dirichlet
350  bc_val = u_init(1, i_mom(1))
351  else
352  call af_bc_neumann_zero(box, nb, iv, coords, bc_val, bc_type)
353  end if
354  end subroutine bc_gas_mom_x
355 
356  !> Boundary conditions for y-momentum
357  subroutine bc_gas_mom_y(box, nb, iv, coords, bc_val, bc_type)
358  type(box_t), intent(in) :: box
359  integer, intent(in) :: nb
360  integer, intent(in) :: iv
361  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
362  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
363  integer, intent(out) :: bc_type
364 
365  if (nb == af_neighb_lowx) then
366  bc_type = af_bc_dirichlet
367  bc_val = u_init(1, i_mom(2))
368  else if (nb == af_neighb_lowy) then
369  bc_type = af_bc_dirichlet
370  bc_val = 0
371  else if (nb == af_neighb_highy) then
372  bc_type = af_bc_dirichlet
373  bc_val = 0
374  else
375  call af_bc_neumann_zero(box, nb, iv, coords, bc_val, bc_type)
376  end if
377  end subroutine bc_gas_mom_y
378 
379  !> Boundary conditions for energy
380  subroutine bc_gas_e(box, nb, iv, coords, bc_val, bc_type)
381  type(box_t), intent(in) :: box
382  integer, intent(in) :: nb
383  integer, intent(in) :: iv
384  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
385  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
386  integer, intent(out) :: bc_type
387 
388  if (nb == af_neighb_lowx) then
389  bc_type = af_bc_dirichlet
390  bc_val = u_init(1, i_e)
391  else
392  call af_bc_neumann_zero(box, nb, iv, coords, bc_val, bc_type)
393  end if
394  end subroutine bc_gas_e
395 
396  subroutine set_lsf_box(box, iv)
397  type(box_t), intent(inout) :: box
398  integer, intent(in) :: iv
399  integer :: IJK, nc
400  real(dp) :: rr(NDIM), norm_dr
401 
402  nc = box%n_cell
403  norm_dr = norm2(box%dr)
404 
405  do kji_do(0,nc+1)
406  rr = af_r_cc(box, [ijk])
407  box%cc(ijk, iv) = get_lsf(rr)
408  end do; close_do
409  end subroutine set_lsf_box
410 
411  !> Level set function
412  real(dp) function get_lsf(rr)
413  real(dp), intent(in) :: rr(NDIM)
414 
415  ! Distance from a point to a line
416  ! https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
417  get_lsf = cos(wedge_angle) * (rr(2) - 0.0_dp) - &
418  sin(wedge_angle) * (rr(1) - 0.15_dp)
419 
420  end function get_lsf
421 
422 end program
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3