Afivo  0.3
Time integration

The m_af_advance module can be used to perform time integration.

Methods

Currently, the following explicit methods are included:

!> Forward Euler method
integer, parameter, public :: af_forward_euler = 1
!> Heun's method (AKA modified Euler's method, explicit trapezoidal rule), CFL
!> coefficient of 1. See e.g. https://en.wikipedia.org/wiki/Heun%27s_method
integer, parameter, public :: af_heuns_method = 2
!> Midpoint method, see e.g. https://en.wikipedia.org/wiki/Midpoint_method
integer, parameter, public :: af_midpoint_method = 3
!> Optimal 3-stage third-order SSPRK method (Shu & Osher), CFL coefficient of
!> 1, see e.g. https://doi.org/10.1137/S0036142902419284
integer, parameter, public :: af_ssprk33_method = 4
!> Optimal 4-stage third-order SSPRK method (Ruuth & Spiteri), CFL coefficient
!> of 2, see e.g. https://doi.org/10.1137/S0036142902419284
integer, parameter, public :: af_ssprk43_method = 5
!> 1st order IMEX method, forward Euler and then implicit solve
integer, parameter, public :: af_imex_euler = 6
!> Trapezoidal IMEX method (2nd order)
integer, parameter, public :: af_imex_trapezoidal = 7
!> Classic 4th order Runge Kutta method, see e.g.
!> https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
integer, parameter, public :: af_rk4_method = 8

New integrators can be added relatively easily by modifying the af_advance routine.

How to use

Time integration can be performed with a call to m_af_advance::af_advance.

User-supplied forward Euler method

To use the built-in time integration, a forward_euler routine has to be provided, see m_af_advance::subr_feuler for details. This routine will then be used to construct the various time integration schemes.

For higher-order schemes, the idea is that multiple copies will be stored for variables that will be integrated, which correspond to different temporal states. The number of copies can be specified in m_af_core::af_add_cc_variable.

The user-provided forward Euler method then takes three extra arguments that indicate which temporal states to operate on. For a simple equation of the form

y' = f(y)

the method should provide a solution

y_out = y_prev + dt * f(y_deriv)

More details can be found at m_af_advance::subr_feuler, and an example from euler_gas_dynamics.f90 is shown below

subroutine forward_euler(tree, dt, dt_stiff, dt_lim, time, s_deriv, n_prev, &
s_prev, w_prev, s_out, i_step, n_steps)
type(af_t), intent(inout) :: tree
real(dp), intent(in) :: dt
real(dp), intent(in) :: dt_stiff !< Time step for stiff terms
real(dp), intent(inout) :: dt_lim
real(dp), intent(in) :: time
integer, intent(in) :: s_deriv
integer, intent(in) :: n_prev !< Number of previous states
integer, intent(in) :: s_prev(n_prev) !< Previous states
real(dp), intent(in) :: w_prev(n_prev) !< Weights of previous states
integer, intent(in) :: s_out
integer, intent(in) :: i_step, n_steps
real(dp) :: dummy_dt(0)
call flux_generic_tree(tree, n_vars, variables, s_deriv, fluxes, dt_lim, &
max_wavespeed, get_fluxes, flux_dummy_modify, flux_dummy_line_modify, &
to_primitive, to_conservative, af_limiter_vanleer_t)
call flux_update_densities(tree, dt, n_vars, variables, n_vars, variables, fluxes, &
s_deriv, n_prev, s_prev, w_prev, s_out, flux_dummy_source, 0, dummy_dt)
end subroutine forward_euler