Afivo  0.3
poisson_basic.f90

Example showing how to use multigrid and compare with an analytic solution. A standard 5-point Laplacian is used.

1 #include "../src/cpp_macros.h"
2 !> \example poisson_basic.f90
3 !>
4 !> Example showing how to use multigrid and compare with an analytic solution. A
5 !> standard 5-point Laplacian is used.
6 program poisson_basic
7  use m_af_all
8  use m_gaussians
9 
10  implicit none
11 
12  integer, parameter :: box_size = 16
13  integer, parameter :: n_iterations = 10
14  integer :: domain_size(NDIM)
15  real(dp) :: domain_len(NDIM)
16  integer :: i_phi
17  integer :: i_sol
18  integer :: i_rhs
19  integer :: i_err
20  integer :: i_tmp
21  integer :: i_gradx
22  integer :: i_egradx
23  type(af_t) :: tree
24  type(ref_info_t) :: refine_info
25  integer :: mg_iter
26  real(dp) :: residu(2), anal_err(2)
27  character(len=100) :: fname
28  type(mg_t) :: mg
29  type(gauss_t) :: gs
30  integer :: count_rate,t_start,t_end
31 
32  print *, "Running poisson_basic_" // dimname
33  print *, "Number of threads", af_get_max_threads()
34 
35  !> [Gauss_init]
36  ! The manufactured solution exists of Gaussians
37  ! Amplitudes: [1.0_dp, 1.0_dp]
38  ! Sigmas : [0.04_dp, 0.04_dp]
39  ! Locations : x, y, z = 0.25 or x, y, z = 0.75
40  call gauss_init(gs, [1.0_dp, 1.0_dp], [0.04_dp, 0.04_dp], &
41  reshape([dtimes(0.1_dp), &
42  dtimes(0.75_dp)], [ndim,2]))
43  !> [Gauss_init]
44 
45  !> [af_init]
46  call af_add_cc_variable(tree, "phi", ix=i_phi)
47  call af_add_cc_variable(tree, "sol", ix=i_sol)
48  call af_add_cc_variable(tree, "rhs", ix=i_rhs)
49  call af_add_cc_variable(tree, "err", ix=i_err)
50  call af_add_cc_variable(tree, "tmp", ix=i_tmp)
51  call af_add_cc_variable(tree, "Dx", ix=i_gradx)
52  call af_add_cc_variable(tree, "eDx", ix=i_egradx)
53 
54  domain_len(1) = 3.0_dp
55  domain_len(2:) = 1.0_dp
56  domain_size(1) = 3 * box_size
57  domain_size(2:) = box_size
58 
59  ! Initialize tree
60  call af_init(tree, & ! Tree to initialize
61  box_size, & ! A box contains box_size**DIM cells
62  domain_len, &
63  domain_size)
64  !> [af_init]
65 
66  call system_clock(t_start, count_rate)
67  !> [set_refinement]
68  do
69  ! For each box, set the initial conditions
70  call af_loop_box(tree, set_initial_condition)
71 
72  ! This updates the refinement of the tree, by at most one level per call.
73  ! The second argument is a subroutine that is called for each box that can
74  ! be refined or derefined, and it should set refinement flags. Information
75  ! about the changes in refinement are returned in the third argument.
76  call af_adjust_refinement(tree, refine_routine, refine_info)
77 
78  ! If no new boxes have been added, exit the loop
79  if (refine_info%n_add == 0) exit
80  end do
81  !> [set_refinement]
82  call system_clock(t_end, count_rate)
83 
84  write(*,"(A,Es10.3,A)") " Wall-clock time generating AMR grid: ", &
85  (t_end-t_start) / real(count_rate,dp), " seconds"
86 
87  call af_print_info(tree)
88 
89  ! Initialize the multigrid options. This performs some basics checks and sets
90  ! default values where necessary.
91  mg%i_phi = i_phi ! Solution variable
92  mg%i_rhs = i_rhs ! Right-hand side variable
93  mg%i_tmp = i_tmp ! Variable for temporary space
94  mg%sides_bc => sides_bc ! Method for boundary conditions
95 
96  ! This routine does not initialize the multigrid fields boxes%i_phi,
97  ! boxes%i_rhs and boxes%i_tmp. These fileds will be initialized at the
98  ! first call of mg_fas_fmg
99  call mg_init(tree, mg)
100 
101  print *, "Multigrid iteration | max residual | max error"
102  call system_clock(t_start, count_rate)
103 
104  do mg_iter = 1, n_iterations
105  ! Perform a FAS-FMG cycle (full approximation scheme, full multigrid). The
106  ! third argument controls whether the residual is stored in i_tmp. The
107  ! fourth argument controls whether to improve the current solution.
108  call mg_fas_fmg(tree, mg, set_residual=.true., have_guess=(mg_iter>1))
109 
110  ! Compute the error compared to the analytic solution
111  call af_loop_box(tree, set_error)
112 
113  ! Determine the minimum and maximum residual and error
114  call af_tree_min_cc(tree, i_tmp, residu(1))
115  call af_tree_max_cc(tree, i_tmp, residu(2))
116  call af_tree_min_cc(tree, i_err, anal_err(1))
117  call af_tree_max_cc(tree, i_err, anal_err(2))
118  write(*,"(I8,13x,2(Es14.5))") mg_iter, maxval(abs(residu)), &
119  maxval(abs(anal_err))
120 
121  !> [write_output]
122  ! This writes a Silo output file containing the cell-centered values of the
123  ! leaves of the tree (the boxes not covered by refinement).
124  write(fname, "(A,I0)") "output/poisson_basic_" // dimname // "_", mg_iter
125  call af_write_silo(tree, trim(fname))
126  !> [write_output]
127  end do
128  call system_clock(t_end, count_rate)
129 
130  write(*, "(A,I0,A,E10.3,A)") &
131  " Wall-clock time after ", n_iterations, &
132  " iterations: ", (t_end-t_start) / real(count_rate, dp), &
133  " seconds"
134 
135  ! This call is not really necessary here, but cleaning up the data in a tree
136  ! is important if your program continues with other tasks.
137  call af_destroy(tree)
138 
139 contains
140 
141  !> [refine_routine]
142  ! Return the refinement flags for box
143  subroutine refine_routine(box, cell_flags)
144  type(box_t), intent(in) :: box
145  integer, intent(out) :: cell_flags(DTIMES(box%n_cell))
146  integer :: IJK, nc
147  real(dp) :: rr(NDIM), dr2, drhs
148 
149  nc = box%n_cell
150  dr2 = maxval(box%dr)**2
151 
152  do kji_do(1,nc)
153  rr = af_r_cc(box, [ijk])
154 
155  ! This is an estimate of the truncation error in the right-hand side,
156  ! which is related to the fourth derivative of the solution.
157  drhs = dr2 * box%cc(ijk, i_rhs)
158 
159  if (abs(drhs) > 1e-3_dp .and. box%lvl < 7 - ndim) then
160  cell_flags(ijk) = af_do_ref
161  else
162  cell_flags(ijk) = af_keep_ref
163  end if
164  end do; close_do
165  end subroutine refine_routine
166  !> [refine_routine]
167 
168  !> [set_initial_condition]
169  ! This routine sets the initial conditions for each box
170  subroutine set_initial_condition(box)
171  type(box_t), intent(inout) :: box
172  integer :: IJK, nc
173  real(dp) :: rr(NDIM), grad(NDIM)
174 
175  nc = box%n_cell
176 
177  do kji_do(1,nc)
178  ! Get the coordinate of the cell center at IJK
179  rr = af_r_cc(box, [ijk])
180 
181  ! And set the rhs values
182  box%cc(ijk, i_rhs) = gauss_laplacian(gs, rr)
183  call gauss_gradient(gs, rr, grad)
184  box%cc(ijk, i_gradx) = grad(1)
185  box%cc(ijk, i_sol) = gauss_value(gs, rr)
186  end do; close_do
187  end subroutine set_initial_condition
188  !> [set_initial_condition]
189 
190  !> [set_error]
191  ! Set the error compared to the analytic solution
192  subroutine set_error(box)
193  type(box_t), intent(inout) :: box
194  integer :: IJK, nc
195  real(dp) :: rr(NDIM), gradx
196 
197  nc = box%n_cell
198 
199  do kji_do(1,nc)
200  rr = af_r_cc(box, [ijk])
201  box%cc(ijk, i_err) = box%cc(ijk, i_phi) - gauss_value(gs, rr)
202 #if NDIM == 1
203  gradx = 0.5_dp * (box%cc(i+1, i_phi) - &
204  box%cc(i-1, i_phi)) / box%dr(1)
205 #elif NDIM == 2
206  gradx = 0.5_dp * (box%cc(i+1, j, i_phi) - &
207  box%cc(i-1, j, i_phi)) / box%dr(1)
208 #elif NDIM == 3
209  gradx = 0.5_dp * (box%cc(i+1, j, k, i_phi) - &
210  box%cc(i-1, j, k, i_phi)) / box%dr(1)
211 #endif
212  box%cc(ijk, i_egradx) = gradx - box%cc(ijk, i_gradx)
213 
214  end do; close_do
215  end subroutine set_error
216  !> [set_error]
217 
218  ! This routine sets boundary conditions for a box
219  subroutine sides_bc(box, nb, iv, coords, bc_val, bc_type)
220  type(box_t), intent(in) :: box
221  integer, intent(in) :: nb
222  integer, intent(in) :: iv
223  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
224  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
225  integer, intent(out) :: bc_type
226  integer :: n
227 
228  ! We use dirichlet boundary conditions
229  bc_type = af_bc_dirichlet
230 
231  ! Below the solution is specified in the approriate ghost cells
232  do n = 1, box%n_cell**(ndim-1)
233  bc_val(n) = gauss_value(gs, coords(:, n))
234  end do
235  end subroutine sides_bc
236 
237 end program poisson_basic
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3
This module can be used to construct solutions consisting of one or more Gaussians.
Definition: m_gaussians.f90:3