Afivo  0.3
poisson_cyl_analytic.f90

Example showing how to use multigrid and compare with an analytic solution. A standard 5-point Laplacian is used in cylindrical coordinates.

1 !> \example poisson_cyl_analytic.f90
2 !>
3 !> Example showing how to use multigrid and compare with an analytic solution. A
4 !> standard 5-point Laplacian is used in cylindrical coordinates.
5 program poisson_cyl_analytic
6  use m_af_all
7 
8  implicit none
9 
10  integer, parameter :: box_size = 8
11  integer, parameter :: n_iterations = 10
12  integer :: i_phi
13  integer :: i_rhs
14  integer :: i_err
15  integer :: i_sol
16  integer :: i_tmp
17  integer :: i_gradx
18  integer :: i_egradx
19 
20  real(dp), parameter :: domain_len = 1.25e-2_dp
21  real(dp), parameter :: pi = acos(-1.0_dp)
22  real(dp), parameter :: sigma = 4e-4_dp * sqrt(0.5_dp)
23  real(dp), parameter :: rz_source(2) = [0.0_dp, 0.5_dp] * domain_len
24  real(dp), parameter :: epsilon_source = 8.85e-12_dp
25  real(dp), parameter :: Q_source = 3e18_dp * 1.6022e-19_dp * &
26  sigma**3 * sqrt(2 * pi)**3
27 
28  type(af_t) :: tree
29  type(ref_info_t) :: ref_info
30  integer :: mg_iter
31  real(dp) :: residu(2), anal_err(2), max_val
32  character(len=100) :: fname
33  type(mg_t) :: mg
34  integer :: count_rate,t_start, t_end
35 
36  print *, "Running poisson_cyl_analytic"
37  print *, "Number of threads", af_get_max_threads()
38 
39  call af_add_cc_variable(tree, "phi", ix=i_phi)
40  call af_add_cc_variable(tree, "rhs", ix=i_rhs)
41  call af_add_cc_variable(tree, "err", ix=i_err)
42  call af_add_cc_variable(tree, "sol", ix=i_sol)
43  call af_add_cc_variable(tree, "tmp", ix=i_tmp)
44  call af_add_cc_variable(tree, "Dx", ix=i_gradx)
45  call af_add_cc_variable(tree, "eDx", ix=i_egradx)
46 
47  ! Initialize tree
48  call af_init(tree, & ! Tree to initialize
49  box_size, & ! A box contains box_size**DIM cells
50  [1.25e-2_dp, 1.25e-2_dp], &
51  [box_size, box_size], &
52  coord=af_cyl) ! Cylindrical coordinates
53 
54  call af_print_info(tree)
55 
56  call system_clock(t_start, count_rate)
57  do
58  ! For each box, set the initial conditions
59  call af_loop_box(tree, set_init_cond)
60 
61  ! This updates the refinement of the tree, by at most one level per call.
62  call af_adjust_refinement(tree, ref_routine, ref_info)
63 
64  ! If no new boxes have been added, exit the loop
65  if (ref_info%n_add == 0) exit
66  end do
67  call system_clock(t_end, count_rate)
68 
69  write(*,"(A,Es10.3,A)") " Wall-clock time generating AMR grid: ", &
70  (t_end-t_start) / real(count_rate,dp), " seconds"
71 
72  call af_print_info(tree)
73 
74  ! Set the multigrid options.
75  mg%i_phi = i_phi ! Solution variable
76  mg%i_rhs = i_rhs ! Right-hand side variable
77  mg%i_tmp = i_tmp ! Variable for temporary space
78  mg%sides_bc => sides_bc ! Method for boundary conditions Because we use
79 
80  ! Initialize the multigrid options. This performs some basics checks and sets
81  ! default values where necessary.
82  ! This routine does not initialize the multigrid variables i_phi, i_rhs
83  ! and i_tmp. These variables will be initialized at the first call of mg_fas_fmg
84  call mg_init(tree, mg)
85 
86  print *, "Multigrid iteration | max residual | max rel. error"
87  call system_clock(t_start, count_rate)
88 
89  do mg_iter = 1, n_iterations
90  ! Perform a FAS-FMG cycle (full approximation scheme, full multigrid). The
91  ! third argument controls whether the residual is stored in i_tmp. The
92  ! fourth argument controls whether to improve the current solution.
93  call mg_fas_fmg(tree, mg, .true., mg_iter>1)
94 
95  ! Compute the error compared to the analytic solution
96  call af_loop_box(tree, set_err)
97 
98  ! Determine the minimum and maximum residual and error
99  call af_tree_min_cc(tree, i_tmp, residu(1))
100  call af_tree_max_cc(tree, i_tmp, residu(2))
101  call af_tree_min_cc(tree, i_err, anal_err(1))
102  call af_tree_max_cc(tree, i_err, anal_err(2))
103  call af_tree_max_cc(tree, i_phi, max_val)
104  anal_err = anal_err / max_val
105 
106  write(*,"(I8,2Es14.5)") mg_iter, maxval(abs(residu)), &
107  maxval(abs(anal_err))
108 
109  write(fname, "(A,I0)") "output/poisson_cyl_analytic_", mg_iter
110  call af_write_silo(tree, trim(fname))
111  end do
112  call system_clock(t_end, count_rate)
113 
114  write(*, "(A,I0,A,E10.3,A)") &
115  " Wall-clock time after ", n_iterations, &
116  " iterations: ", (t_end-t_start) / real(count_rate, dp), &
117  " seconds"
118 
119  ! This call is not really necessary here, but cleaning up the data in a tree
120  ! is important if your program continues with other tasks.
121  call af_destroy(tree)
122 
123 contains
124 
125  ! Set refinement flags for box
126  subroutine ref_routine(box, cell_flags)
127  type(box_t), intent(in) :: box
128  integer, intent(out) :: cell_flags(box%n_cell, box%n_cell)
129  integer :: i, j, nc
130  real(dp) :: crv, dr2
131 
132  nc = box%n_cell
133  dr2 = maxval(box%dr)**2
134 
135  ! Compute the "curvature" in phi
136  do j = 1, nc
137  do i = 1, nc
138  crv = dr2 * abs(box%cc(i, j, i_rhs))
139 
140  ! And refine if it exceeds a threshold
141  if (crv > 1e-1_dp .and. box%lvl < 10) then
142  cell_flags(i, j) = af_do_ref
143  else
144  cell_flags(i, j) = af_keep_ref
145  end if
146  end do
147  end do
148  end subroutine ref_routine
149 
150  ! This routine sets the initial conditions for each box
151  subroutine set_init_cond(box)
152  type(box_t), intent(inout) :: box
153  integer :: i, j, nc
154  real(dp) :: rz(2), gradx
155 
156  nc = box%n_cell
157 
158  do j = 0, nc+1
159  do i = 0, nc+1
160  rz = af_r_cc(box, [i,j])
161 
162  ! Gaussian source term
163  box%cc(i, j, i_rhs) = - q_source * &
164  exp(-sum((rz - rz_source)**2) / (2 * sigma**2)) / &
165  (sigma**3 * sqrt(2 * pi)**3 * epsilon_source)
166 
167  box%cc(i, j, i_sol) = solution(rz)
168  end do
169  end do
170 
171  do j = 1, nc
172  do i = 1, nc
173  gradx = 0.5_dp * (box%cc(i+1, j, i_sol) - &
174  box%cc(i-1, j, i_sol)) / box%dr(1)
175  box%cc(i, j, i_gradx) = gradx
176  end do
177  end do
178 
179  end subroutine set_init_cond
180 
181  real(dp) function solution(rz_in)
182  real(dp), intent(in) :: rz_in(2)
183  real(dp) :: d, erf_d
184 
185  d = norm2(rz_in - rz_source)
186 
187  ! Take limit when d -> 0
188  if (d < sqrt(epsilon(1.0d0))) then
189  erf_d = sqrt(2.0_dp/pi) / sigma
190  else
191  erf_d = erf(d * sqrt(0.5_dp) / sigma) / d
192  end if
193 
194  solution = erf_d * q_source / (4 * pi * epsilon_source)
195  end function solution
196 
197  ! Compute error compared to the analytic solution
198  subroutine set_err(box)
199  type(box_t), intent(inout) :: box
200  integer :: i, j, nc
201  real(dp) :: rz(2), gradx
202 
203  nc = box%n_cell
204  do j = 1, nc
205  do i = 1, nc
206  rz = af_r_cc(box, [i,j])
207  box%cc(i, j, i_err) = box%cc(i, j, i_phi) - box%cc(i, j, i_sol)
208 
209  gradx = 0.5_dp * (box%cc(i+1, j, i_phi) - &
210  box%cc(i-1, j, i_phi)) / box%dr(1)
211  box%cc(i, j, i_egradx) = gradx - box%cc(i, j, i_gradx)
212  end do
213  end do
214  end subroutine set_err
215 
216  ! This routine sets boundary conditions for a box
217  subroutine sides_bc(box, nb, iv, coords, bc_val, bc_type)
218  type(box_t), intent(in) :: box
219  integer, intent(in) :: nb
220  integer, intent(in) :: iv
221  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
222  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
223  integer, intent(out) :: bc_type
224  integer :: n
225 
226  if (nb == af_neighb_lowx) then
227  ! On the axis, apply Neumann zero conditions
228  bc_type = af_bc_neumann
229  bc_val = 0.0_dp
230  else
231  ! We use dirichlet boundary conditions
232  bc_type = af_bc_dirichlet
233 
234  ! Below the solution is specified in the approriate ghost cells
235  do n = 1, box%n_cell**(ndim-1)
236  bc_val(n) = solution(coords(:, n))
237  end do
238  end if
239  end subroutine sides_bc
240 
241 end program poisson_cyl_analytic
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3