Afivo  0.3
poisson_cyl_dielectric.f90

Example showing how to use m_af_multigrid in cylindrical coordinates with an abrubt change in "eps", and compare with an analytic solution.

1 !> \example poisson_cyl_dielectric.f90
2 !>
3 !> Example showing how to use m_af_multigrid in cylindrical coordinates with an abrubt
4 !> change in "eps", and compare with an analytic solution.
5 program poisson_cyl_dielectric
6  use m_af_all
7  use m_gaussians
8 
9  implicit none
10 
11  integer, parameter :: box_size = 8
12  integer, parameter :: n_iterations = 10
13  integer :: i_phi
14  integer :: i_rhs
15  integer :: i_err
16  integer :: i_tmp
17  integer :: i_eps
18 
19  type(af_t) :: tree
20  type(ref_info_t) :: ref_info
21  integer :: mg_iter
22  real(dp) :: residu(2), anal_err(2)
23  character(len=100) :: fname
24  type(mg_t) :: mg
25  type(gauss_t) :: gs
26  integer :: count_rate,t_start, t_end
27 
28  print *, "Running poisson_cyl_dielectric"
29  print *, "Number of threads", af_get_max_threads()
30 
31  ! The manufactured solution exists of two Gaussians, which are stored in gs
32  call gauss_init(gs, [1.0_dp], [0.1_dp], &
33  reshape([0.0_dp, 0.25_dp], [2,1]))
34 
35  call af_add_cc_variable(tree, "phi", ix=i_phi)
36  call af_add_cc_variable(tree, "rhs", ix=i_rhs)
37  call af_add_cc_variable(tree, "err", ix=i_err)
38  call af_add_cc_variable(tree, "tmp", ix=i_tmp)
39  call af_add_cc_variable(tree, "eps", ix=i_eps)
40 
41  ! Initialize tree
42  call af_init(tree, & ! Tree to initialize
43  box_size, & ! A box contains box_size**DIM cells
44  [1.0_dp, 1.0_dp], &
45  [box_size, box_size], &
46  coord=af_cyl) ! Cylindrical coordinates
47 
48  call af_print_info(tree)
49 
50  call system_clock(t_start, count_rate)
51  do
52  ! For each box, set the initial conditions
53  call af_loop_box(tree, set_init_cond)
54 
55  ! This updates the refinement of the tree, by at most one level per call.
56  call af_adjust_refinement(tree, ref_routine, ref_info)
57 
58  ! If no new boxes have been added, exit the loop
59  if (ref_info%n_add == 0) exit
60  end do
61  call system_clock(t_end, count_rate)
62 
63  write(*,"(A,Es10.3,A)") " Wall-clock time generating AMR grid: ", &
64  (t_end-t_start) / real(count_rate,dp), " seconds"
65 
66  call af_print_info(tree)
67 
68  ! Set the multigrid options.
69  tree%mg_i_eps = i_eps
70  mg%i_phi = i_phi ! Solution variable
71  mg%i_rhs = i_rhs ! Right-hand side variable
72  mg%i_tmp = i_tmp ! Variable for temporary space
73  mg%sides_bc => sides_bc ! Method for boundary conditions Because we use
74 
75  ! Initialize the multigrid options. This performs some basics checks and sets
76  ! default values where necessary.
77  ! This routine does not initialize the multigrid variables i_phi, i_rhs
78  ! and i_tmp. These variables will be initialized at the first call of mg_fas_fmg
79  call mg_init(tree, mg)
80 
81  print *, "Multigrid iteration | max residual | max error"
82  call system_clock(t_start, count_rate)
83 
84  do mg_iter = 1, n_iterations
85  ! Perform a FAS-FMG cycle (full approximation scheme, full multigrid). The
86  ! third argument controls whether the residual is stored in i_tmp. The
87  ! fourth argument controls whether to improve the current solution.
88  call mg_fas_fmg(tree, mg, .true., mg_iter>1)
89 
90  ! Compute the error compared to the analytic solution
91  call af_loop_box(tree, set_err)
92 
93  ! Determine the minimum and maximum residual and error
94  call af_tree_min_cc(tree, i_tmp, residu(1))
95  call af_tree_max_cc(tree, i_tmp, residu(2))
96  call af_tree_min_cc(tree, i_err, anal_err(1))
97  call af_tree_max_cc(tree, i_err, anal_err(2))
98  write(*,"(I8,2Es14.5)") mg_iter, maxval(abs(residu)), &
99  maxval(abs(anal_err))
100 
101  write(fname, "(A,I0)") "output/poisson_cyl_dielectric_", mg_iter
102  call af_write_silo(tree, trim(fname))
103  end do
104  call system_clock(t_end, count_rate)
105 
106  write(*, "(A,I0,A,E10.3,A)") &
107  " Wall-clock time after ", n_iterations, &
108  " iterations: ", (t_end-t_start) / real(count_rate, dp), &
109  " seconds"
110 
111  ! This call is not really necessary here, but cleaning up the data in a tree
112  ! is important if your program continues with other tasks.
113  call af_destroy(tree)
114 
115 contains
116 
117  ! Set refinement flags for box
118  subroutine ref_routine(box, cell_flags)
119  type(box_t), intent(in) :: box
120  integer, intent(out) :: cell_flags(box%n_cell, box%n_cell)
121  integer :: i, j, nc
122  real(dp) :: crv, dr2
123 
124  nc = box%n_cell
125  dr2 = maxval(box%dr)**2
126 
127  ! Compute the "curvature" in phi
128  do j = 1, nc
129  do i = 1, nc
130  crv = dr2 * abs(box%cc(i, j, i_rhs)) / box%cc(i, j, i_eps)
131 
132  ! And refine if it exceeds a threshold
133  if (crv > 1.0e-3_dp) then
134  cell_flags(i, j) = af_do_ref
135  else
136  cell_flags(i, j) = af_keep_ref
137  end if
138  end do
139  end do
140  end subroutine ref_routine
141 
142  ! This routine sets the initial conditions for each box
143  subroutine set_init_cond(box)
144  type(box_t), intent(inout) :: box
145  integer :: i, j, nc
146  real(dp) :: rz(2), grad(2), qbnd, tmp
147 
148  nc = box%n_cell
149  box%cc(:, :, i_phi) = 0
150 
151  do j = 0, nc+1
152  do i = 0, nc+1
153  rz = af_r_cc(box, [i,j])
154 
155  ! Change epsilon in part of the domain
156  if (rz(1) < 0.5_dp .and. rz(2) < 0.5_dp) then
157  box%cc(i, j, i_eps) = 100.0_dp
158  else
159  box%cc(i, j, i_eps) = 1.0_dp
160  end if
161 
162  ! Partially compute the right-hand side (see below)
163  box%cc(i, j, i_rhs) = gauss_laplacian_cyl(gs, rz) * box%cc(i, j, i_eps)
164  end do
165  end do
166 
167  ! We have to place surface charges where epsilon has a jump, this is first
168  ! done in the r-direction
169  do j = 1, nc
170  do i = 0, nc
171  rz = af_rr_cc(box, [i + 0.5_dp, real(j, dp)])
172 
173  ! Determine amount of charge
174  call gauss_gradient(gs, rz, grad)
175  qbnd = (box%cc(i+1, j, i_eps) - box%cc(i, j, i_eps)) * &
176  grad(1) / box%dr(1)
177 
178  ! Place surface charge weighted with eps
179  tmp = box%cc(i+1, j, i_eps) / &
180  (box%cc(i, j, i_eps) + box%cc(i+1, j, i_eps))
181  box%cc(i+1, j, i_rhs) = box%cc(i+1, j, i_rhs) + tmp * qbnd
182  box%cc(i, j, i_rhs) = box%cc(i, j, i_rhs) + (1-tmp) * qbnd
183  end do
184  end do
185 
186  ! Set surface charge in z-direction
187  do j = 0, nc
188  do i = 1, nc
189  rz = af_rr_cc(box, [real(i, dp), j + 0.5_dp])
190 
191  ! Determine amount of charge
192  call gauss_gradient(gs, rz, grad)
193  qbnd = (box%cc(i, j+1, i_eps) - box%cc(i, j, i_eps)) * &
194  grad(2) / box%dr(2)
195 
196  ! Place surface charge weighted with eps
197  tmp = box%cc(i, j+1, i_eps) / &
198  (box%cc(i, j, i_eps) + box%cc(i, j+1, i_eps))
199  box%cc(i, j+1, i_rhs) = box%cc(i, j+1, i_rhs) + tmp * qbnd
200  box%cc(i, j, i_rhs) = box%cc(i, j, i_rhs) + (1-tmp) * qbnd
201  end do
202  end do
203  end subroutine set_init_cond
204 
205  ! Compute error compared to the analytic solution
206  subroutine set_err(box)
207  type(box_t), intent(inout) :: box
208  integer :: i, j, nc
209  real(dp) :: rz(2)
210 
211  nc = box%n_cell
212  do j = 1, nc
213  do i = 1, nc
214  rz = af_r_cc(box, [i,j])
215  box%cc(i, j, i_err) = box%cc(i, j, i_phi) - gauss_value(gs, rz)
216  end do
217  end do
218  end subroutine set_err
219 
220  ! This routine sets boundary conditions for a box
221  subroutine sides_bc(box, nb, iv, coords, bc_val, bc_type)
222  type(box_t), intent(in) :: box
223  integer, intent(in) :: nb
224  integer, intent(in) :: iv
225  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
226  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
227  integer, intent(out) :: bc_type
228  integer :: n
229 
230  if (nb == af_neighb_lowx) then
231  ! On the axis, apply Neumann zero conditions
232  bc_type = af_bc_neumann
233  bc_val = 0.0_dp
234  else
235  ! We use dirichlet boundary conditions
236  bc_type = af_bc_dirichlet
237 
238  ! Below the solution is specified in the approriate ghost cells
239  do n = 1, box%n_cell**(ndim-1)
240  bc_val(n) = gauss_value(gs, coords(:, n))
241  end do
242  end if
243  end subroutine sides_bc
244 
245 end program poisson_cyl_dielectric
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3
This module can be used to construct solutions consisting of one or more Gaussians.
Definition: m_gaussians.f90:3