Afivo  0.3
poisson_div_cleaning.f90

Example showing how to use multigrid for ensuring a vector field is divergence free

1 #include "../src/cpp_macros.h"
2 !> \example poisson_div_cleaning.f90
3 !>
4 !> Example showing how to use multigrid for ensuring a vector field is
5 !> divergence free
6 program poisson_div_cleaning
7  use m_af_all
8  use m_gaussians
9 
10  implicit none
11 
12  integer, parameter :: box_size = 8
13  integer, parameter :: n_iterations = 10
14  integer :: domain_size(NDIM)
15  real(dp) :: domain_length(NDIM)
16  real(dp) :: domain_origin(NDIM)
17  integer :: i_phi
18  integer :: i_div_old
19  integer :: i_div_new
20  integer :: i_tmp
21  integer :: if_B_old
22  integer :: if_B_new
23  integer :: i_B(3)
24  type(af_t) :: tree
25  type(ref_info_t) :: refine_info
26  integer :: mg_iter
27  character(len=100) :: fname
28  type(mg_t) :: mg
29 
30  real(dp), parameter :: alphar_ = 0.64d0
31  real(dp), parameter :: ar_ = 0.25d0
32  real(dp), parameter :: B0 = 1.0_dp
33 
34  print *, "Running poisson_div_cleaning_" // dimname
35  print *, "Number of threads", af_get_max_threads()
36 
37  call af_add_cc_variable(tree, "phi", ix=i_phi)
38  call af_add_cc_variable(tree, "div_old", ix=i_div_old)
39  call af_add_cc_variable(tree, "tmp", ix=i_tmp)
40  call af_add_cc_variable(tree, "div_new", ix=i_div_new)
41  call af_add_cc_variable(tree, "Bx", ix=i_b(1))
42  call af_add_cc_variable(tree, "By", ix=i_b(2))
43  call af_add_cc_variable(tree, "Bz", ix=i_b(3))
44  call af_add_fc_variable(tree, "B_old", ix=if_b_old)
45  call af_add_fc_variable(tree, "B_new", ix=if_b_new)
46 
47  domain_length(:) = 1.0_dp
48  domain_origin(:) = -0.5_dp * domain_length(:)
49  domain_size(:) = box_size
50 
51  call af_init(tree, & ! Tree to initialize
52  box_size, & ! A box contains box_size**DIM cells
53  domain_origin+domain_length, &
54  domain_size, &
55  r_min=domain_origin)
56 
57  do
58  call af_loop_box(tree, set_initial_condition)
59  call af_adjust_refinement(tree, refine_routine, refine_info)
60  if (refine_info%n_add == 0) exit
61  end do
62 
63  call af_print_info(tree)
64 
65  mg%i_phi = i_phi ! Solution variable
66  mg%i_rhs = i_div_old ! Right-hand side variable
67  mg%i_tmp = i_tmp ! Variable for temporary space
68  mg%sides_bc => af_bc_dirichlet_zero
69 
70  call mg_init(tree, mg)
71 
72  do mg_iter = 1, n_iterations
73  call mg_fas_fmg(tree, mg, set_residual=.true., have_guess=(mg_iter>1))
74  call af_loop_box(tree, set_error)
75  write(fname, "(A,I0)") "output/poisson_div_cleaning_" // &
76  dimname // "_", mg_iter
77  call af_write_silo(tree, trim(fname))
78  end do
79 
80 contains
81 
82  ! Return the refinement flags for box
83  subroutine refine_routine(box, cell_flags)
84  type(box_t), intent(in) :: box
85  integer, intent(out) :: cell_flags(DTIMES(box%n_cell))
86 
87  if (box%lvl < 3) then
88  cell_flags = af_do_ref
89  else
90  cell_flags = af_keep_ref
91  end if
92  end subroutine refine_routine
93 
94  real(dp) function Bx(xyz)
95  real(dp), intent(in) :: xyz(NDIM)
96  real(dp) :: r, t, phi, Bphi
97  r = norm2(xyz(1:2))
98  t = r / ar_
99  bphi = b0 / (t * (1 + t**2)**alphar_) * &
100  sqrt(((1 + t**2)**(2 * alphar_) - 1 - 2 * alphar_ * t**2) / &
101  (2 * alphar_ - 1))
102  phi = atan2(xyz(2), xyz(1))
103  bx = -sin(phi) * bphi
104  end function bx
105 
106  real(dp) function By(xyz)
107  real(dp), intent(in) :: xyz(NDIM)
108  real(dp) :: r, t, phi, Bphi
109  r = norm2(xyz(1:2))
110  t = r / ar_
111  bphi = b0 / (t * (1 + t**2)**alphar_) * &
112  sqrt(((1 + t**2)**(2 * alphar_) - 1 - 2 * alphar_ * t**2) / &
113  (2 * alphar_ - 1))
114  phi = atan2(xyz(2), xyz(1))
115  by = cos(phi) * bphi
116  end function by
117 
118  real(dp) function Bz(xyz)
119  real(dp), intent(in) :: xyz(NDIM)
120  real(dp) :: r, t
121  r = norm2(xyz(1:2))
122  t = r / ar_
123  bz = b0 / (1 + t**2)**alphar_
124  end function bz
125 
126  ! This routine sets the initial conditions for each box
127  subroutine set_initial_condition(box)
128  type(box_t), intent(inout) :: box
129  integer :: IJK, nc
130  real(dp) :: xyz(NDIM)
131 
132  nc = box%n_cell
133 
134  ! x-component
135  do k = 1, nc; do j = 1, nc; do i = 1, nc+1
136  box%fc(ijk, 1, if_b_old) = bx(af_r_fc(box, 1, [ijk]))
137  end do; end do; end do
138 
139  ! y-component
140  do k = 1, nc; do j = 1, nc+1; do i = 1, nc
141  box%fc(ijk, 2, if_b_old) = by(af_r_fc(box, 2, [ijk]))
142  end do; end do; end do
143 
144  ! z-component
145  do k = 1, nc+1; do j = 1, nc; do i = 1, nc
146  box%fc(ijk, 3, if_b_old) = bz(af_r_fc(box, 3, [ijk]))
147  end do; end do; end do
148 
149  do kji_do(1, nc)
150  xyz = af_r_cc(box, [ijk])
151 
152  ! Cell-centered field for visualization
153  box%cc(ijk, i_b(:)) = [bx(xyz), by(xyz), bz(xyz)]
154 
155  ! Initial divergence of field
156  box%cc(ijk, i_div_old) = &
157  (box%fc(i+1, j, k, 1, if_b_old) - &
158  box%fc(i, j, k, 1, if_b_old)) / box%dr(1) + &
159  (box%fc(i, j+1, k, 2, if_b_old) - &
160  box%fc(i, j, k, 2, if_b_old)) / box%dr(2) + &
161  (box%fc(i, j, k+1, 3, if_b_old) - &
162  box%fc(i, j, k, 3, if_b_old)) / box%dr(3)
163  end do; close_do
164  end subroutine set_initial_condition
165 
166  subroutine set_error(box)
167  type(box_t), intent(inout) :: box
168  integer :: IJK, nc
169  real(dp) :: inv_dr(NDIM)
170 
171  nc = box%n_cell
172  inv_dr = 1 / box%dr
173 
174  do k = 1, nc; do j = 1, nc; do i = 1, nc+1
175  ! x-component
176  box%fc(ijk, 1, if_b_new) = box%fc(ijk, 1, if_b_old) - inv_dr(1) * &
177  (box%cc(i, j, k, i_phi) - box%cc(i-1, j, k, i_phi))
178  end do; end do; end do
179 
180  do k = 1, nc; do j = 1, nc+1; do i = 1, nc
181  ! y-component
182  box%fc(ijk, 2, if_b_new) = box%fc(ijk, 2, if_b_old) - inv_dr(2) * &
183  (box%cc(i, j, k, i_phi) - box%cc(i, j-1, k, i_phi))
184  end do; end do; end do
185 
186  do k = 1, nc+1; do j = 1, nc; do i = 1, nc
187  ! z-component
188  box%fc(ijk, 3, if_b_new) = box%fc(ijk, 3, if_b_old) - inv_dr(3) * &
189  (box%cc(i, j, k, i_phi) - box%cc(i, j, k-1, i_phi))
190  end do; end do; end do
191 
192  ! Divergence after cleaning
193  do kji_do(1, nc)
194  box%cc(ijk, i_div_new) = &
195  (box%fc(i+1, j, k, 1, if_b_new) - &
196  box%fc(i, j, k, 1, if_b_new)) / box%dr(1) + &
197  (box%fc(i, j+1, k, 2, if_b_new) - &
198  box%fc(i, j, k, 2, if_b_new)) / box%dr(2) + &
199  (box%fc(i, j, k+1, 3, if_b_new) - &
200  box%fc(i, j, k, 3, if_b_new)) / box%dr(3)
201  end do; close_do
202  end subroutine set_error
203 
204 end program poisson_div_cleaning
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3
This module can be used to construct solutions consisting of one or more Gaussians.
Definition: m_gaussians.f90:3