Afivo  0.3
poisson_helmholtz.f90

Example showing how to use multigrid for Helmholtz equation and compare with an analytic solution. A standard 5 or 7 point stencil is used.

1 #include "../src/cpp_macros.h"
2 !> \example poisson_helmholtz.f90
3 !>
4 !> Example showing how to use multigrid for Helmholtz equation and compare with
5 !> an analytic solution. A standard 5 or 7 point stencil is used.
6 program poisson_helmholtz
7  use m_af_all
8  use m_gaussians
9 
10  implicit none
11 
12  integer, parameter :: box_size = 8
13  integer, parameter :: n_iterations = 10
14  integer :: i_phi
15  integer :: i_rhs
16  integer :: i_err
17  integer :: i_tmp
18  real(dp), parameter :: lambda = 1.0e3_dp
19 
20  type(af_t) :: tree
21  type(ref_info_t) :: refine_info
22  integer :: mg_iter
23  real(dp) :: residu(2), anal_err(2)
24  character(len=100) :: fname
25  type(mg_t) :: mg
26  type(gauss_t) :: gs
27  integer :: count_rate,t_start,t_end
28 
29  print *, "Running poisson_helmholtz_" // dimname // ""
30  print *, "Number of threads", af_get_max_threads()
31 
32  call gauss_init(gs, [1.0_dp, 1.0_dp], [0.04_dp, 0.04_dp], &
33  reshape([dtimes(0.25_dp), &
34  dtimes(0.75_dp)], [ndim,2]))
35 
36  call af_add_cc_variable(tree, "phi", ix=i_phi)
37  call af_add_cc_variable(tree, "rhs", ix=i_rhs)
38  call af_add_cc_variable(tree, "tmp", ix=i_tmp)
39  call af_add_cc_variable(tree, "err", ix=i_err)
40 
41  ! Initialize tree
42  call af_init(tree, & ! Tree to initialize
43  box_size, & ! A box contains box_size**DIM cells
44  [dtimes(1.0_dp)], &
45  [dtimes(box_size)])
46 
47  do
48  call af_loop_box(tree, set_initial_condition)
49  call af_adjust_refinement(tree, refine_routine, refine_info)
50  if (refine_info%n_add == 0) exit
51  end do
52 
53  call af_print_info(tree)
54 
55  mg%i_phi = i_phi ! Solution variable
56  mg%i_rhs = i_rhs ! Right-hand side variable
57  mg%i_tmp = i_tmp ! Variable for temporary space
58  mg%sides_bc => sides_bc ! Method for boundary conditions
59  mg%helmholtz_lambda = lambda
60 
61  call mg_init(tree, mg)
62 
63  print *, "Multigrid iteration | max residual | max error"
64  call system_clock(t_start, count_rate)
65 
66  do mg_iter = 1, n_iterations
67  call mg_fas_fmg(tree, mg, set_residual=.true., have_guess=(mg_iter>1))
68  call af_loop_box(tree, set_error)
69  call af_tree_min_cc(tree, i_tmp, residu(1))
70  call af_tree_max_cc(tree, i_tmp, residu(2))
71  call af_tree_min_cc(tree, i_err, anal_err(1))
72  call af_tree_max_cc(tree, i_err, anal_err(2))
73  write(*,"(I8,13x,2(Es14.5))") mg_iter, maxval(abs(residu)), &
74  maxval(abs(anal_err))
75 
76  write(fname, "(A,I0)") "output/poisson_helmholtz_" // dimname // "_", mg_iter
77  call af_write_vtk(tree, trim(fname))
78  end do
79  call system_clock(t_end, count_rate)
80 
81  write(*, "(A,I0,A,E10.3,A)") &
82  " Wall-clock time after ", n_iterations, &
83  " iterations: ", (t_end-t_start) / real(count_rate, dp), &
84  " seconds"
85 
86 contains
87 
88  ! Return the refinement flags for box
89  subroutine refine_routine(box, cell_flags)
90  type(box_t), intent(in) :: box
91  integer, intent(out) :: cell_flags(DTIMES(box%n_cell))
92  integer :: IJK, nc
93  real(dp) :: rr(NDIM), dr2, drhs
94 
95  nc = box%n_cell
96  dr2 = maxval(box%dr)**2
97 
98  do kji_do(1,nc)
99  rr = af_r_cc(box, [ijk])
100 
101  ! This is an estimate of the truncation error in the right-hand side,
102  ! which is related to the fourth derivative of the solution.
103  drhs = dr2 * box%cc(ijk, i_rhs)
104 
105  if (abs(drhs) > 1e-3_dp .and. box%lvl < 5) then
106  cell_flags(ijk) = af_do_ref
107  else
108  cell_flags(ijk) = af_keep_ref
109  end if
110  end do; close_do
111  end subroutine refine_routine
112 
113  ! This routine sets the initial conditions for each box
114  subroutine set_initial_condition(box)
115  type(box_t), intent(inout) :: box
116  integer :: IJK, nc
117  real(dp) :: rr(NDIM)
118 
119  nc = box%n_cell
120 
121  do kji_do(1,nc)
122  ! Get the coordinate of the cell center at IJK
123  rr = af_r_cc(box, [ijk])
124 
125  ! And set the rhs values
126  box%cc(ijk, i_rhs) = gauss_laplacian(gs, rr) - &
127  lambda * gauss_value(gs, rr)
128  end do; close_do
129  end subroutine set_initial_condition
130 
131  ! Set the error compared to the analytic solution
132  subroutine set_error(box)
133  type(box_t), intent(inout) :: box
134  integer :: IJK, nc
135  real(dp) :: rr(NDIM)
136 
137  nc = box%n_cell
138  do kji_do(1,nc)
139  rr = af_r_cc(box, [ijk])
140  box%cc(ijk, i_err) = box%cc(ijk, i_phi) - gauss_value(gs, rr)
141  end do; close_do
142  end subroutine set_error
143 
144  ! This routine sets boundary conditions for a box
145  subroutine sides_bc(box, nb, iv, coords, bc_val, bc_type)
146  type(box_t), intent(in) :: box
147  integer, intent(in) :: nb
148  integer, intent(in) :: iv
149  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
150  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
151  integer, intent(out) :: bc_type
152  integer :: n
153 
154  ! We use dirichlet boundary conditions
155  bc_type = af_bc_dirichlet
156 
157  ! Below the solution is specified in the approriate ghost cells
158  do n = 1, box%n_cell**(ndim-1)
159  bc_val(n) = gauss_value(gs, coords(:, n))
160  end do
161  end subroutine sides_bc
162 
163 end program poisson_helmholtz
164 
165 
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3
This module can be used to construct solutions consisting of one or more Gaussians.
Definition: m_gaussians.f90:3