Afivo  0.3
poisson_helmholtz_cyl.f90

Example showing how to use multigrid and compare with an analytic solution, using the method of manufactured solutions. A standard 5-point Laplacian is used in cylindrical coordinates.

1 !> \example poisson_helmholtz_cyl.f90
2 !>
3 !> Example showing how to use multigrid and compare with an analytic solution,
4 !> using the method of manufactured solutions. A standard 5-point Laplacian is
5 !> used in cylindrical coordinates.
6 program helmholtz_cyl
7  use m_af_all
8  use m_gaussians
9 
10  implicit none
11 
12  integer, parameter :: box_size = 8
13  integer, parameter :: n_iterations = 10
14  integer :: i_phi
15  integer :: i_rhs
16  integer :: i_err
17  integer :: i_tmp
18  real(dp), parameter :: lambda = 1000.0_dp
19 
20  type(af_t) :: tree
21  type(ref_info_t) :: ref_info
22  integer :: mg_iter
23  real(dp) :: residu(2), anal_err(2)
24  character(len=100) :: fname
25  type(mg_t) :: mg
26  type(gauss_t) :: gs
27  integer :: count_rate,t_start, t_end
28 
29  print *, "Running helmholtz_cyl"
30  print *, "Number of threads", af_get_max_threads()
31 
32  ! The manufactured solution exists of two Gaussians, which are stored in gs
33  call gauss_init(gs, [1.0_dp, 1.0_dp], [0.01_dp, 0.04_dp], &
34  reshape([0.0_dp, 0.25_dp, 0.0_dp, 0.75_dp], [2,2]))
35 
36  call af_add_cc_variable(tree, "phi", ix=i_phi)
37  call af_add_cc_variable(tree, "rhs", ix=i_rhs)
38  call af_add_cc_variable(tree, "err", ix=i_err)
39  call af_add_cc_variable(tree, "tmp", ix=i_tmp)
40 
41  ! Initialize tree
42  call af_init(tree, & ! Tree to initialize
43  box_size, & ! A box contains box_size**DIM cells
44  [1.0_dp, 1.0_dp], &
45  [box_size, box_size], &
46  coord=af_cyl) ! Cylindrical coordinates
47 
48  call af_print_info(tree)
49 
50  call system_clock(t_start, count_rate)
51  do
52  ! For each box, set the initial conditions
53  call af_loop_box(tree, set_init_cond)
54 
55  ! This updates the refinement of the tree, by at most one level per call.
56  call af_adjust_refinement(tree, ref_routine, ref_info)
57 
58  ! If no new boxes have been added, exit the loop
59  if (ref_info%n_add == 0) exit
60  end do
61  call system_clock(t_end, count_rate)
62 
63  write(*,"(A,Es10.3,A)") " Wall-clock time generating AMR grid: ", &
64  (t_end-t_start) / real(count_rate,dp), " seconds"
65 
66  call af_print_info(tree)
67 
68  ! Set the multigrid options.
69  mg%i_phi = i_phi ! Solution variable
70  mg%i_rhs = i_rhs ! Right-hand side variable
71  mg%i_tmp = i_tmp ! Variable for temporary space
72  mg%sides_bc => sides_bc ! Method for boundary conditions Because we use
73  mg%helmholtz_lambda = lambda
74 
75  ! Initialize the multigrid options. This performs some basics checks and sets
76  ! default values where necessary.
77  ! This routine does not initialize the multigrid variables i_phi, i_rhs
78  ! and i_tmp. These variables will be initialized at the first call of mg_fas_fmg
79  call mg_init(tree, mg)
80 
81  print *, "Multigrid iteration | max residual | max error"
82  call system_clock(t_start, count_rate)
83 
84  do mg_iter = 1, n_iterations
85  ! Perform a FAS-FMG cycle (full approximation scheme, full multigrid). The
86  ! third argument controls whether the residual is stored in i_tmp. The
87  ! fourth argument controls whether to improve the current solution.
88  call mg_fas_fmg(tree, mg, .true., mg_iter>1)
89 
90  ! Compute the error compared to the analytic solution
91  call af_loop_box(tree, set_err)
92 
93  ! Determine the minimum and maximum residual and error
94  call af_tree_min_cc(tree, i_tmp, residu(1))
95  call af_tree_max_cc(tree, i_tmp, residu(2))
96  call af_tree_min_cc(tree, i_err, anal_err(1))
97  call af_tree_max_cc(tree, i_err, anal_err(2))
98  write(*,"(I8,2Es14.5)") mg_iter, maxval(abs(residu)), &
99  maxval(abs(anal_err))
100 
101  write(fname, "(A,I0)") "output/helmholtz_cyl_", mg_iter
102  call af_write_vtk(tree, trim(fname))
103  end do
104  call system_clock(t_end, count_rate)
105 
106  write(*, "(A,I0,A,E10.3,A)") &
107  " Wall-clock time after ", n_iterations, &
108  " iterations: ", (t_end-t_start) / real(count_rate, dp), &
109  " seconds"
110 
111  ! This call is not really necessary here, but cleaning up the data in a tree
112  ! is important if your program continues with other tasks.
113  call af_destroy(tree)
114 
115 contains
116 
117  ! Set refinement flags for box
118  subroutine ref_routine(box, cell_flags)
119  type(box_t), intent(in) :: box
120  integer, intent(out) :: cell_flags(box%n_cell, box%n_cell)
121  integer :: i, j, nc
122  real(dp) :: crv, dr2
123 
124  nc = box%n_cell
125  dr2 = maxval(box%dr)**2
126 
127  ! Compute the "curvature" in phi
128  do j = 1, nc
129  do i = 1, nc
130  crv = dr2 * abs(box%cc(i, j, i_rhs))
131 
132  ! And refine if it exceeds a threshold
133  if (crv > 5.0e-4_dp) then
134  cell_flags(i, j) = af_do_ref
135  else
136  cell_flags(i, j) = af_keep_ref
137  end if
138  ! if (box%lvl < 4) then
139  ! cell_flags(i, j) = af_do_ref
140  ! else
141  ! cell_flags(i, j) = af_keep_ref
142  ! end if
143  end do
144  end do
145  end subroutine ref_routine
146 
147  ! This routine sets the initial conditions for each box
148  subroutine set_init_cond(box)
149  type(box_t), intent(inout) :: box
150  integer :: i, j, nc
151  real(dp) :: rz(2)
152 
153  nc = box%n_cell
154 
155  do j = 0, nc+1
156  do i = 0, nc+1
157  rz = af_r_cc(box, [i,j])
158  box%cc(i, j, i_rhs) = gauss_laplacian_cyl(gs, rz) - &
159  lambda * gauss_value(gs, rz)
160  end do
161  end do
162  end subroutine set_init_cond
163 
164  ! Compute error compared to the analytic solution
165  subroutine set_err(box)
166  type(box_t), intent(inout) :: box
167  integer :: i, j, nc
168  real(dp) :: rz(2)
169 
170  nc = box%n_cell
171  do j = 1, nc
172  do i = 1, nc
173  rz = af_r_cc(box, [i,j])
174  box%cc(i, j, i_err) = box%cc(i, j, i_phi) - gauss_value(gs, rz)
175  end do
176  end do
177  end subroutine set_err
178 
179  ! This routine sets boundary conditions for a box
180  subroutine sides_bc(box, nb, iv, coords, bc_val, bc_type)
181  type(box_t), intent(in) :: box
182  integer, intent(in) :: nb
183  integer, intent(in) :: iv
184  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
185  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
186  integer, intent(out) :: bc_type
187  integer :: n
188 
189  if (nb == af_neighb_lowx) then
190  ! On the axis, apply Neumann zero conditions
191  bc_type = af_bc_neumann
192  bc_val = 0.0_dp
193  else
194  ! We use dirichlet boundary conditions
195  bc_type = af_bc_dirichlet
196 
197  ! Below the solution is specified in the approriate ghost cells
198  do n = 1, box%n_cell**(ndim-1)
199  bc_val(n) = gauss_value(gs, coords(:, n))
200  end do
201  end if
202  end subroutine sides_bc
203 
204 end program helmholtz_cyl
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3
This module can be used to construct solutions consisting of one or more Gaussians.
Definition: m_gaussians.f90:3