Afivo  0.3
reaction_diffusion.f90

This example shows how to solve reaction-diffusion equations with different time step methods.

1 #include "../src/cpp_macros.h"
2 !> \example reaction_diffusion.f90
3 !>
4 !> This example shows how to solve reaction-diffusion equations with different
5 !> time step methods.
6 program reaction_diffusion
7  use m_af_all
8 
9  implicit none
10 
11  integer, parameter :: box_size = 8
12  integer :: nx_min = 100
13  integer :: i_u
14  integer :: i_v
15  integer :: i_phi1, i_phi2
16  integer :: i_rhs1, i_rhs2
17  integer :: i_tmp
18 
19  real(dp) :: domain_len = 1.0_dp
20  type(af_t) :: tree
21  type(mg_t) :: mg1, mg2
22  type(ref_info_t) :: refine_info
23  integer :: it, output_cnt
24  integer :: my_unit
25  real(dp) :: time
26  real(dp) :: end_time = 2.0_dp
27  real(dp) :: dt = 1e-3_dp
28  real(dp) :: dt_output = 1e-2_dp
29  real(dp) :: u_rng_ampl = 0.0_dp
30  real(dp) :: v_rng_ampl = 0.0_dp
31  logical :: periodic(3) = .false.
32  character(len=100) :: fname
33  logical :: file_exists
34 
35  character(len=20) :: time_integrator = "imex"
36  ! Two types of equations can be solved, schnakenberg and gs (Gray-Scott). The
37  ! Gray-Scott models are not stiff, whereas the schnakenberg model has a stiff
38  ! diffusion term.
39  character(len=20) :: equation_type = "schnakenberg"
40 
41  ! These settings are for the example given in section 4.4 (p. 401) of
42  ! "Time-dependent advection diffusion reaction systems" by Hundsdorfer &
43  ! Verwer. The example is credited to Schnakenberg 1979.
44  real(dp) :: alpha = 0.1305_dp
45  real(dp) :: beta = 0.7695_dp
46  real(dp) :: D1 = 0.05_dp
47  real(dp) :: D2 = 1.0_dp
48  real(dp) :: kappa = 100.0_dp
49 
50  ! These settings are for a Gray-Scott model.
51  real(dp) :: gs_F = 0.046d0
52  real(dp) :: gs_k = 0.063d0
53 
54  namelist /settings/ alpha, beta, d1, d2, kappa, end_time, dt, &
55  dt_output, nx_min, time_integrator, periodic, u_rng_ampl, &
56  v_rng_ampl, equation_type, domain_len, gs_f, gs_k
57 
58  print *, "Running reaction_diffusion_" // dimname // ""
59  print *, "Number of threads", af_get_max_threads()
60 
61  inquire(file="reaction_diffusion.txt", exist=file_exists)
62  if (file_exists) then
63  open(newunit=my_unit, file="reaction_diffusion.txt", status="old")
64  read(my_unit, settings)
65  close(my_unit)
66  else
67  print *, "No input file reaction_diffusion.txt found; default settings"
68  end if
69 
70  call af_add_cc_variable(tree, "u", ix=i_u, n_copies=2)
71  call af_add_cc_variable(tree, "v", ix=i_v, n_copies=2)
72  call af_add_cc_variable(tree, "phi1", ix=i_phi1)
73  call af_add_cc_variable(tree, "phi2", ix=i_phi2)
74  call af_add_cc_variable(tree, "rhs1", ix=i_rhs1)
75  call af_add_cc_variable(tree, "rhs2", ix=i_rhs2)
76  call af_add_cc_variable(tree, "tmp", ix=i_tmp)
77 
78  call af_set_cc_methods(tree, i_u, af_bc_neumann_zero)
79  call af_set_cc_methods(tree, i_v, af_bc_neumann_zero)
80 
81  ! Initialize tree
82  call af_init(tree, & ! Tree to initialize
83  box_size, & ! A box contains box_size**DIM cells
84  [dtimes(domain_len)], &
85  [dtimes(box_size)], &
86  periodic=periodic)
87 
88  call af_print_info(tree)
89 
90  ! Set up the initial conditions
91  do
92  call af_loop_box(tree, set_initial_condition)
93  call af_gc_tree(tree, [i_u, i_v])
94  call af_adjust_refinement(tree, & ! tree
95  refine_routine, & ! Refinement function
96  refine_info) ! Information about refinement
97  if (refine_info%n_add == 0) exit
98  end do
99 
100  ! Always initialize multigrid methods, even with explicit time integration
101  mg1%i_phi = i_phi1
102  mg1%i_rhs = i_rhs1
103  mg1%i_tmp = i_tmp
104  mg1%sides_bc => af_bc_neumann_zero
105 
106  mg2%i_phi = i_phi2
107  mg2%i_rhs = i_rhs2
108  mg2%i_tmp = i_tmp
109  mg2%sides_bc => af_bc_neumann_zero
110 
111  output_cnt = 0
112  time = 0
113  it = 0
114  time = 0
115 
116  select case (time_integrator)
117  case ("imex")
118  continue
119  case default
120  if (dt > af_min_dr(tree)**2/(2*ndim*max(d1, d2))) then
121  error stop "dt is too large for explicit integration"
122  end if
123  end select
124 
125  ! Lambda in the Helmholtz equations depends on the time step
126  mg1%helmholtz_lambda = 1/(0.5_dp * dt * d1)
127  mg2%helmholtz_lambda = 1/(0.5_dp * dt * d2)
128 
129  call mg_init(tree, mg1)
130  call mg_init(tree, mg2)
131 
132  ! Starting simulation
133  do
134  it = it + 1
135 
136  if (output_cnt * dt_output <= time) then
137  output_cnt = output_cnt + 1
138  write(fname, "(A,I0)") "output/reaction_diffusion_" &
139  // dimname // "_", output_cnt
140  call af_write_silo(tree, trim(fname), output_cnt, time)
141  end if
142 
143  select case (time_integrator)
144  case ("imex")
145  call rd_imex(tree)
146  case ("forward_euler")
147  call af_loop_box(tree, forward_euler)
148  case ("midpoint_method")
149  call af_loop_box(tree, midpoint_method_step1)
150  call af_gc_tree(tree, [i_u+1, i_v+1])
151  call af_loop_box(tree, midpoint_method_step2)
152  end select
153 
154  call af_gc_tree(tree, [i_u, i_v])
155 
156  if (time > end_time) exit
157  time = time + dt
158  end do
159 
160 contains
161 
162  subroutine forward_euler(box)
163  type(box_t), intent(inout) :: box
164  call step_f(box, dt, [i_u, i_v], [i_u, i_v], [i_u, i_v])
165  end subroutine forward_euler
166 
167  subroutine midpoint_method_step1(box)
168  type(box_t), intent(inout) :: box
169  call step_f(box, 0.5_dp * dt, [i_u, i_v], [i_u, i_v], [i_u+1, i_v+1])
170  end subroutine midpoint_method_step1
171 
172  subroutine midpoint_method_step2(box)
173  type(box_t), intent(inout) :: box
174  call step_f(box, dt, [i_u+1, i_v+1], [i_u, i_v], [i_u, i_v])
175  end subroutine midpoint_method_step2
176 
177  !> This implements the IMEX method described in Chapter IV eq. (4.12) of the
178  !> Hundsdorfer-Verwer book, which is a combination of the implicit and
179  !> explicit trapezoidal rule.
180  subroutine rd_imex(tree)
181  type(af_t), intent(inout) :: tree
182  integer :: n
183  real(dp) :: max_res, max_rhs
184  real(dp), parameter :: max_rel_residual = 1e-6_dp
185 
186  call af_loop_box(tree, rd_imex_step1)
187 
188  do n = 1, 10
189  call af_tree_maxabs_cc(tree, mg1%i_rhs, max_rhs)
190  call mg_fas_fmg(tree, mg1, .true., .true.)
191  ! call mg_fas_vcycle(tree, mg1, .true.)
192  call af_tree_maxabs_cc(tree, mg1%i_tmp, max_res)
193  if (max_res/max_rhs < max_rel_residual) exit
194  end do
195 
196  do n = 1, 10
197  call af_tree_maxabs_cc(tree, mg2%i_rhs, max_rhs)
198  call mg_fas_fmg(tree, mg2, .true., .true.)
199  ! call mg_fas_vcycle(tree, mg2, .true.)
200  call af_tree_maxabs_cc(tree, mg2%i_tmp, max_res)
201  if (max_res/max_rhs < max_rel_residual) exit
202  end do
203 
204  call af_loop_box(tree, rd_imex_step2)
205  end subroutine rd_imex
206 
207  subroutine rd_imex_step1(box)
208  type(box_t), intent(inout) :: box
209  integer :: nc
210 
211  nc = box%n_cell
212 
213  ! Set rhs for Helmholtz equation
214  call step_f0(box, dt, [i_u, i_v], [i_u, i_v], [mg1%i_rhs, mg2%i_rhs])
215  call step_f1(box, 0.5_dp * dt, [i_u, i_v], [mg1%i_rhs, mg2%i_rhs], &
216  [mg1%i_rhs, mg2%i_rhs])
217 
218  box%cc(dtimes(1:nc), mg1%i_rhs) = -box%cc(dtimes(1:nc), mg1%i_rhs) * &
219  mg1%helmholtz_lambda
220  box%cc(dtimes(1:nc), mg2%i_rhs) = -box%cc(dtimes(1:nc), mg2%i_rhs) * &
221  mg2%helmholtz_lambda
222 
223  end subroutine rd_imex_step1
224 
225  subroutine rd_imex_step2(box)
226  type(box_t), intent(inout) :: box
227 
228  call step_f(box, 0.5_dp * dt, [i_u, i_v], [i_u, i_v], [i_u, i_v])
229  call step_f(box, 0.5_dp * dt, [mg1%i_phi, mg2%i_phi], &
230  [i_u, i_v], [i_u, i_v])
231  end subroutine rd_imex_step2
232 
233  !> This is the non-stiff (reaction) part
234  subroutine step_f0(box, dt, i_deriv, i_prev, i_out)
235  type(box_t), intent(inout) :: box
236  real(dp), intent(in) :: dt
237  integer, intent(in) :: i_deriv(2)
238  integer, intent(in) :: i_prev(2)
239  integer, intent(in) :: i_out(2)
240  real(dp) :: tmp(DTIMES(box%n_cell), 2)
241  integer :: nc
242 
243  nc = box%n_cell
244 
245  ! Store the derivatives in case i_out overlaps with i_deriv
246  select case (equation_type)
247  case ("gs")
248  tmp(dtimes(:), 1) = -box%cc(dtimes(1:nc), i_deriv(1)) * &
249  box%cc(dtimes(1:nc), i_deriv(2))**2 + &
250  gs_f * (1 - box%cc(dtimes(1:nc), i_deriv(1)))
251  tmp(dtimes(:), 2) = box%cc(dtimes(1:nc), i_deriv(1)) * &
252  box%cc(dtimes(1:nc), i_deriv(2))**2 - &
253  (gs_f + gs_k) * box%cc(dtimes(1:nc), i_deriv(2))
254  case ("schnakenberg")
255  tmp(dtimes(:), 1) = kappa * (alpha - box%cc(dtimes(1:nc), i_deriv(1)) + &
256  box%cc(dtimes(1:nc), i_deriv(1))**2 * box%cc(dtimes(1:nc), i_deriv(2)))
257  tmp(dtimes(:), 2) = kappa * (beta - &
258  box%cc(dtimes(1:nc), i_deriv(1))**2 * box%cc(dtimes(1:nc), i_deriv(2)))
259  case default
260  error stop "Invalid equation type"
261  end select
262 
263  box%cc(dtimes(1:nc), i_out) = &
264  box%cc(dtimes(1:nc), i_prev) + dt * tmp
265  end subroutine step_f0
266 
267  !> This is the stiff (diffusion) part
268  subroutine step_f1(box, dt, i_deriv, i_prev, i_out)
269  type(box_t), intent(inout) :: box
270  real(dp), intent(in) :: dt
271  integer, intent(in) :: i_deriv(2)
272  integer, intent(in) :: i_prev(2)
273  integer, intent(in) :: i_out(2)
274  real(dp) :: tmp(DTIMES(box%n_cell), 2)
275  integer :: nc
276 
277  nc = box%n_cell
278  call laplacian(box, i_deriv(1), tmp(dtimes(:), 1))
279  call laplacian(box, i_deriv(2), tmp(dtimes(:), 2))
280  tmp(dtimes(:), 1) = tmp(dtimes(:), 1) * d1
281  tmp(dtimes(:), 2) = tmp(dtimes(:), 2) * d2
282 
283  box%cc(dtimes(1:nc), i_out) = &
284  box%cc(dtimes(1:nc), i_prev) + dt * tmp
285  end subroutine step_f1
286 
287  subroutine step_f(box, dt, i_deriv, i_prev, i_out)
288  type(box_t), intent(inout) :: box
289  real(dp), intent(in) :: dt
290  integer, intent(in) :: i_deriv(2)
291  integer, intent(in) :: i_prev(2)
292  integer, intent(in) :: i_out(2)
293  integer :: nc
294  real(dp) :: tmp(DTIMES(box%n_cell), 2)
295 
296  nc = box%n_cell
297 
298  call laplacian(box, i_deriv(1), tmp(dtimes(:), 1))
299  call laplacian(box, i_deriv(2), tmp(dtimes(:), 2))
300  tmp(dtimes(:), 1) = tmp(dtimes(:), 1) * d1
301  tmp(dtimes(:), 2) = tmp(dtimes(:), 2) * d2
302 
303  ! Add the other derivatives
304  select case (equation_type)
305  case ("gs")
306  tmp(dtimes(:), 1) = tmp(dtimes(:), 1) - &
307  box%cc(dtimes(1:nc), i_deriv(1)) * &
308  box%cc(dtimes(1:nc), i_deriv(2))**2 + &
309  gs_f * (1 - box%cc(dtimes(1:nc), i_deriv(1)))
310  tmp(dtimes(:), 2) = tmp(dtimes(:), 2) + &
311  box%cc(dtimes(1:nc), i_deriv(1)) * &
312  box%cc(dtimes(1:nc), i_deriv(2))**2 - &
313  (gs_f + gs_k) * box%cc(dtimes(1:nc), i_deriv(2))
314  case ("schnakenberg")
315  tmp(dtimes(:), 1) = tmp(dtimes(:), 1) + &
316  kappa * (alpha - box%cc(dtimes(1:nc), i_deriv(1)) + &
317  box%cc(dtimes(1:nc), i_deriv(1))**2 * box%cc(dtimes(1:nc), i_deriv(2)))
318  tmp(dtimes(:), 2) = tmp(dtimes(:), 2) + &
319  kappa * (beta - &
320  box%cc(dtimes(1:nc), i_deriv(1))**2 * box%cc(dtimes(1:nc), i_deriv(2)))
321  case default
322  error stop "Invalid equation type"
323  end select
324 
325  box%cc(dtimes(1:nc), i_out) = box%cc(dtimes(1:nc), i_prev) + dt * tmp
326  end subroutine step_f
327 
328  !> Return the refinement flag for box
329  subroutine refine_routine(box, cell_flags)
330  type(box_t), intent(in) :: box
331  integer, intent(out) :: cell_flags(DTIMES(box%n_cell))
332 
333  if (maxval(box%dr) > domain_len/nx_min) then
334  cell_flags = af_do_ref
335  else
336  cell_flags = af_keep_ref
337  end if
338  end subroutine refine_routine
339 
340  !> This routine sets the initial conditions for each box
341  subroutine set_initial_condition(box)
342  type(box_t), intent(inout) :: box
343  integer :: IJK, nc
344  real(dp) :: rr(NDIM), r0(NDIM), u, v
345 
346  nc = box%n_cell
347 
348  select case (equation_type)
349  case ("gs")
350  do kji_do(0,nc+1)
351  rr = af_r_cc(box, [ijk])
352 
353  if (all(abs(rr - 0.5_dp * domain_len) < 10.0_dp/256)) then
354  call random_number(u)
355  call random_number(v)
356  box%cc(ijk, i_u) = 0.5_dp + u_rng_ampl * (u - 0.5_dp)
357  box%cc(ijk, i_v) = 0.25_dp + v_rng_ampl * (v - 0.5_dp)
358  else
359  box%cc(ijk, i_u) = 1.0_dp
360  box%cc(ijk, i_v) = 0.0_dp
361  end if
362  end do; close_do
363  case ("schnakenberg")
364  r0(1) = 1.0_dp/3
365  r0(2:) = 0.5_dp
366 
367  do kji_do(0,nc+1)
368  rr = af_r_cc(box, [ijk])
369  call random_number(u)
370  call random_number(v)
371  box%cc(ijk, i_u) = alpha + beta + 1e-3_dp * &
372  exp(-100_dp * sum((rr - r0)**2)) + u_rng_ampl * (u - 0.5_dp)
373  box%cc(ijk, i_v) = beta / (alpha + beta)**2 + v_rng_ampl * (v - 0.5_dp)
374  end do; close_do
375  case default
376  error stop "Unknown equation type"
377  end select
378  end subroutine set_initial_condition
379 
380  !> Perform Laplacian operator
381  subroutine laplacian(box, i_in, lpl)
382  type(box_t), intent(inout) :: box
383  integer, intent(in) :: i_in
384  real(dp), intent(out) :: lpl(DTIMES(1:box%n_cell))
385  integer :: IJK, nc
386  real(dp) :: idr2(NDIM)
387 
388  nc = box%n_cell
389  idr2 = 1 / box%dr**2
390 
391  associate(cc => box%cc, n => i_in)
392  do kji_do(1, nc)
393 #if NDIM == 1
394  lpl(i) = idr2(1) * (cc(i-1, n) + cc(i+1, n) - 2 * cc(i, n))
395 #elif NDIM == 2
396  lpl(i, j) = &
397  idr2(1) * (cc(i-1, j, n) + cc(i+1, j, n) - 2 * cc(i, j, n)) + &
398  idr2(2) * (cc(i, j-1, n) + cc(i, j+1, n) - 2 * cc(i, j, n))
399 #elif NDIM == 3
400  lpl(i, j, k) = &
401  idr2(1) * (cc(i-1, j, k, n) + cc(i+1, j, k, n) &
402  - 2 * cc(i, j, k, n)) &
403  + idr2(2) * (cc(i, j-1, k, n) + cc(i, j+1, k, n) &
404  - 2 * cc(i, j, k, n)) &
405  + idr2(3) * (cc(i, j, k-1, n) + cc(i, j, k+1, n) &
406  - 2 * cc(i, j, k, n))
407 #endif
408  end do; close_do
409  end associate
410  end subroutine laplacian
411 
412 end program reaction_diffusion
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3