Afivo  0.3
time_integration.f90

An example to test the accuracy of time integration, solving a simple equation: d/dt y = -y

1 #include "../src/cpp_macros.h"
2 !> \example time_integration.f90
3 !>
4 !> An example to test the accuracy of time integration, solving a simple
5 !> equation: d/dt y = -y
6 program time_integration
7  use m_af_all
8 
9  implicit none
10 
11  integer :: i_phi, i_err
12  integer :: n, n_steps, integrator
13  real(dp), parameter :: initial_value = exp(1.0_dp)
14  real(dp) :: dt, time, end_time
15  real(dp) :: max_error
16  character(len=100) :: argument
17  type(af_t) :: tree
18 
19  end_time = 1.0_dp
20  dt = 0.1_dp
21 
22  ! Read dt from command line if given
23  if (command_argument_count() > 0) then
24  call get_command_argument(1, argument)
25  read(argument, *) dt
26  end if
27 
28  n_steps = nint(end_time/dt)
29  dt = end_time / n_steps
30 
31  write(*, "(A20,2A12)") "integrator ", "dt", "max_error"
32 
33  do integrator = 1, af_num_integrators
34  time = 0.0_dp
35  call integrate(tree, integrator, time, dt, n_steps)
36  call af_loop_box_arg(tree, set_error, [time])
37  call af_tree_maxabs_cc(tree, i_err, max_error)
38  write(*, "(A20,2E12.4)") af_integrator_names(integrator), dt, max_error
39  call af_destroy(tree)
40  end do
41 
42 contains
43 
44  subroutine set_initial_condition(box)
45  type(box_t), intent(inout) :: box
46  box%cc(dtimes(:), i_phi) = initial_value
47  end subroutine set_initial_condition
48 
49  elemental real(dp) function solution(t)
50  real(dp), intent(in) :: t
51  solution = initial_value * exp(-t)
52  end function solution
53 
54  subroutine set_error(box, time)
55  type(box_t), intent(inout) :: box
56  real(dp), intent(in) :: time(:)
57  integer :: IJK, nc
58 
59  nc = box%n_cell
60  do kji_do(1,nc)
61  box%cc(ijk, i_err) = box%cc(ijk, i_phi) - solution(time(1))
62  end do; close_do
63  end subroutine set_error
64 
65  subroutine forward_euler(tree, dt, dt_stiff, dt_lim, time, s_deriv, n_prev, s_prev, &
66  w_prev, s_out, i_step, n_steps)
67  type(af_t), intent(inout) :: tree
68  real(dp), intent(in) :: dt !< Time step
69  real(dp), intent(in) :: dt_stiff !< Time step for stiff terms
70  real(dp), intent(inout) :: dt_lim !< Computed time step limit
71  real(dp), intent(in) :: time !< Current time
72  integer, intent(in) :: s_deriv !< State to compute derivatives from
73  integer, intent(in) :: n_prev !< Number of previous states
74  integer, intent(in) :: s_prev(n_prev) !< Previous states
75  real(dp), intent(in) :: w_prev(n_prev) !< Weights of previous states
76  integer, intent(in) :: s_out !< Output state
77  integer, intent(in) :: i_step !< Step of the integrator
78  integer, intent(in) :: n_steps !< Total number of steps
79  integer :: lvl, IJK, n, id, nc
80 
81  nc = tree%n_cell
82 
83  !$omp parallel private(lvl, n, id, IJK)
84  do lvl = 1, tree%highest_lvl
85  !$omp do
86  do n = 1, size(tree%lvls(lvl)%leaves)
87  id = tree%lvls(lvl)%leaves(n)
88  associate(cc => tree%boxes(id)%cc)
89  do kji_do(1,nc)
90  cc(ijk, i_phi+s_out) = sum(w_prev * cc(ijk, i_phi+s_prev)) - &
91  dt_stiff * cc(ijk, i_phi+s_deriv)
92  end do; close_do
93  end associate
94  end do
95  !$omp end do
96  end do
97  !$omp end parallel
98 
99  call af_gc_tree(tree, [i_phi])
100  end subroutine forward_euler
101 
102  subroutine integrate(tree, integrator, time, dt, n_steps)
103  type(af_t), intent(inout) :: tree
104  integer, intent(in) :: integrator
105  real(dp), intent(inout) :: time
106  real(dp), intent(in) :: dt
107  integer, intent(in) :: n_steps
108  real(dp) :: dt_lim
109  integer :: n_copies
110  integer, parameter :: box_size = 8
111 
112  n_copies = af_advance_num_steps(integrator)
113  call af_add_cc_variable(tree, "phi", ix=i_phi, n_copies=n_copies)
114  call af_add_cc_variable(tree, "err", ix=i_err)
115  call af_set_cc_methods(tree, i_phi, af_bc_neumann_zero)
116  call af_init(tree, box_size, [dtimes(1.0_dp)], [dtimes(box_size)], &
117  periodic=[dtimes(.true.)], mem_limit_gb=1e-3_dp)
118 
119  call af_loop_box(tree, set_initial_condition)
120 
121  do n = 1, n_steps
122  call af_advance(tree, dt, dt_lim, time, [i_phi], integrator, &
123  forward_euler, implicit_solver)
124  end do
125  end subroutine integrate
126 
127  !> Implicit solver for equation d/dt y = -y, which has the solution
128  !> y_n+1 = y_n / (1 + dt)
129  subroutine implicit_solver(tree, dt_stiff, time, n_prev, s_prev, w_prev, s_out)
130  type(af_t), intent(inout) :: tree
131  real(dp), intent(in) :: dt_stiff !< Time step for stiff terms
132  real(dp), intent(in) :: time !< Current time
133  integer, intent(in) :: n_prev !< Number of previous states
134  integer, intent(in) :: s_prev(n_prev) !< Previous states
135  real(dp), intent(in) :: w_prev(n_prev) !< Weights of previous states
136  integer, intent(in) :: s_out !< Output state
137 
138  integer :: lvl, IJK, n, id, nc
139 
140  nc = tree%n_cell
141 
142  !$omp parallel private(lvl, n, id, IJK)
143  do lvl = 1, tree%highest_lvl
144  !$omp do
145  do n = 1, size(tree%lvls(lvl)%leaves)
146  id = tree%lvls(lvl)%leaves(n)
147  associate(cc => tree%boxes(id)%cc)
148  do kji_do(1,nc)
149  cc(ijk, i_phi+s_out) = sum(w_prev * cc(ijk, i_phi+s_prev)) / &
150  (1 + dt_stiff)
151  end do; close_do
152  end associate
153  end do
154  !$omp end do
155  end do
156  !$omp end parallel
157 
158  call af_gc_tree(tree, [i_phi])
159  end subroutine implicit_solver
160 
161 end program time_integration
Module which contains all Afivo modules, so that a user does not have to include them separately.
Definition: m_af_all.f90:3