Afivo  0.3
simple_streamer.f90

A simplified model for ionization waves and/or streamers in 2D

1 !> \example simple_streamer.f90
2 !>
3 !> A simplified model for ionization waves and/or streamers in 2D
4 program simple_streamer
5 
6  use m_af_types
7  use m_af_core
9  use m_af_utils
10  use m_af_restrict
11  use m_af_multigrid
12  use m_af_output
13  use m_write_silo
14  use m_af_prolong
15 
16  implicit none
17 
18  integer :: i, n
19  character(len=100) :: fname
20  type(af_t) :: tree ! This contains the full grid information
21  type(mg_t) :: mg ! Multigrid option struct
22  type(ref_info_t) :: refine_info
23 
24  ! Indices of cell-centered variables
25  integer :: i_elec ! Electron density
26  integer :: i_pion ! Positive ion density
27  integer :: i_elec_old ! For time-stepping scheme
28  integer :: i_pion_old ! For time-stepping scheme
29  integer :: i_phi ! Electrical potential
30  integer :: i_fld ! Electric field norm
31  integer :: i_rhs ! Source term Poisson
32 
33  ! Indices of face-centered variables **
34  integer :: f_elec ! Electron flux
35  integer :: f_fld ! Electric field vector
36 
37  ! Simulation parameters
38  real(dp), parameter :: end_time = 3e-9_dp
39  real(dp), parameter :: dt_output = 20e-11_dp
40  real(dp), parameter :: dt_max = 20e-11_dp
41  integer, parameter :: ref_per_steps = 2
42  integer, parameter :: box_size = 8
43 
44  ! Physical parameters
45  real(dp), parameter :: applied_field = -0.8e7_dp
46  real(dp), parameter :: mobility = 0.03_dp
47  real(dp), parameter :: diffusion_c = 0.2_dp
48 
49  ! Computational domain
50  real(dp), parameter :: domain_length = 2e-3_dp
51  real(dp), parameter :: refine_max_dx = 1e-3_dp
52  real(dp), parameter :: refine_min_dx = 1e-9_dp
53 
54  ! Settings for the initial conditions
55  real(dp), parameter :: init_density = 1e15_dp
56  real(dp), parameter :: init_y_min = 0.8_dp * domain_length
57  real(dp), parameter :: init_y_max = 0.9_dp * domain_length
58 
59  ! Simulation variables
60  real(dp) :: dt
61  real(dp) :: time
62  integer :: output_count
63 
64  ! To test charge conservation
65  real(dp) :: sum_elec, sum_pion
66 
67  call af_add_cc_variable(tree, "elec", ix=i_elec, n_copies=2)
68  i_elec_old = af_find_cc_variable(tree, "elec_2")
69  call af_add_cc_variable(tree, "pion", ix=i_pion, n_copies=2)
70  i_pion_old = af_find_cc_variable(tree, "pion_2")
71  call af_add_cc_variable(tree, "phi", ix=i_phi)
72  call af_add_cc_variable(tree, "fld", ix=i_fld)
73  call af_add_cc_variable(tree, "rhs", ix=i_rhs)
74 
75  call af_add_fc_variable(tree, "f_elec", ix=f_elec)
76  call af_add_fc_variable(tree, "f_fld", ix=f_fld)
77 
78  ! Initialize the tree (which contains all the mesh information)
79  call af_init(tree, & ! Tree to initialize
80  box_size, & ! A box contains box_size**DIM cells
81  [domain_length, domain_length], &
82  [box_size, box_size], &
83  periodic=[.true., .false.])
84 
85 
86  ! Set the multigrid options. First define the variables to use
87  mg%i_phi = i_phi
88  mg%i_tmp = i_fld
89  mg%i_rhs = i_rhs
90 
91  ! Routines to use for ...
92  mg%sides_bc => sides_bc_pot ! Filling ghost cell on physical boundaries
93 
94  ! This routine always needs to be called when using multigrid
95  call mg_init(tree, mg)
96 
97  call af_set_cc_methods(tree, i_elec, af_bc_dirichlet_zero, &
98  prolong=af_prolong_limit)
99  call af_set_cc_methods(tree, i_pion, af_bc_dirichlet_zero, &
100  prolong=af_prolong_limit)
101  call af_set_cc_methods(tree, i_fld, af_bc_neumann_zero)
102 
103  output_count = 0 ! Number of output files written
104  time = 0 ! Simulation time (all times are in s)
105 
106  ! Set up the initial conditions
107  do
108  ! For each box in tree, set the initial conditions
109  call af_loop_box(tree, set_initial_condition)
110 
111  ! Compute electric field on the tree.
112  ! First perform multigrid to get electric potential,
113  ! then take numerical gradient to geld field.
114  call compute_fld(tree, .false.)
115 
116  ! Adjust the refinement of a tree using refine_routine (see below) for grid
117  ! refinement.
118  ! Routine af_adjust_refinement sets the bit af_bit_new_children for each box
119  ! that is refined. On input, the tree should be balanced. On output,
120  ! the tree is still balanced, and its refinement is updated (with at most
121  call af_adjust_refinement(tree, & ! tree
122  refinement_routine, & ! Refinement function
123  refine_info) ! Information about refinement
124 
125  ! If no new boxes have been added or removed, exit the loop
126  if (refine_info%n_add == 0 .and. refine_info%n_rm == 0) exit
127  end do
128 
129  call af_print_info(tree)
130 
131  do
132  ! Get a new time step, which is at most dt_max
133  call af_reduction(tree, & ! Tree to do the reduction on
134  max_dt, & ! function
135  get_min, & ! function
136  dt_max, & ! Initial value for the reduction
137  dt) ! Result of the reduction
138 
139  if (dt < 1e-14) then
140  print *, "dt getting too small, instability?", dt
141  time = end_time + 1.0_dp
142  end if
143 
144  ! Every dt_output, write output
145  if (output_count * dt_output <= time) then
146  output_count = output_count + 1
147  write(fname, "(A,I6.6)") "output/simple_streamer_", output_count
148 
149  ! Write the cell centered data of a tree to a Silo file. Only the
150  ! leaves of the tree are used
151  call af_write_silo(tree, fname, output_count, time)
152 
153  call af_tree_sum_cc(tree, i_elec, sum_elec)
154  call af_tree_sum_cc(tree, i_pion, sum_pion)
155  print *, "sum(pion-elec)/sum(pion)", (sum_pion - sum_elec)/sum_pion
156  end if
157 
158  if (time > end_time) exit
159 
160  ! We perform n_steps between mesh-refinements
161  do n = 1, ref_per_steps
162  time = time + dt
163 
164  ! Copy previous solution
165  call af_tree_copy_cc(tree, i_elec, i_elec_old)
166  call af_tree_copy_cc(tree, i_pion, i_pion_old)
167 
168  ! Two forward Euler steps over dt
169  do i = 1, 2
170  ! First calculate fluxes
171  call af_loop_tree(tree, fluxes_koren, leaves_only=.true.)
172  call af_consistent_fluxes(tree, [f_elec])
173 
174  ! Update the solution
175  call af_loop_box_arg(tree, update_solution, [dt], &
176  leaves_only=.true.)
177 
178  ! Compute new field on first iteration
179  if (i == 1) call compute_fld(tree, .true.)
180  end do
181 
182  ! Take average of phi_old and phi (explicit trapezoidal rule)
183  call af_loop_box(tree, average_dens)
184 
185  ! Compute field with new density
186  call compute_fld(tree, .true.)
187  end do
188 
189  ! Fill ghost cells for i_pion and i_elec
190  call af_gc_tree(tree, [i_elec, i_pion])
191 
192  ! Adjust the refinement of a tree using refine_routine (see below) for grid
193  ! refinement.
194  ! Routine af_adjust_refinement sets the bit af_bit_new_children for each box
195  ! that is refined. On input, the tree should be balanced. On output,
196  ! the tree is still balanced, and its refinement is updated (with at most
197  ! one level per call).
198  call af_adjust_refinement(tree, & ! tree
199  refinement_routine, & ! Refinement function
200  refine_info, & ! Information about refinement
201  4) ! Buffer width (in cells)
202 
203  if (refine_info%n_add > 0 .or. refine_info%n_rm > 0) then
204  ! Compute the field on the new mesh
205  call compute_fld(tree, .true.)
206  end if
207  end do
208 
209 contains
210 
211  !> This routine sets the refinement flag for boxes(id)
212  subroutine refinement_routine(box, cell_flags)
213  type(box_t), intent(in) :: box
214  integer, intent(out) :: cell_flags(box%n_cell, box%n_cell)
215  integer :: i, j, nc
216  real(dp) :: dx, dens, fld, adx, xy(2)
217 
218  nc = box%n_cell
219  dx = maxval(box%dr)
220 
221  do j = 1, nc
222  do i = 1, nc
223  xy = af_r_cc(box, [i,j])
224  dens = box%cc(i, j, i_elec)
225  fld = box%cc(i, j, i_fld)
226  adx = get_alpha(fld) * dx
227 
228  if (dens > 1e0_dp .and. adx > 0.8_dp) then
229  cell_flags(i, j) = af_do_ref
230  else if (dx < 1.25e-5_dp .and. adx < 0.1_dp) then
231  cell_flags(i, j) = af_rm_ref
232  else
233  cell_flags(i, j) = af_keep_ref
234  end if
235  end do
236  end do
237 
238  ! Make sure we don't have or get a too fine or too coarse grid
239  if (dx > refine_max_dx) then
240  cell_flags = af_do_ref
241  else if (dx < 2 * refine_min_dx) then
242  where(cell_flags == af_do_ref) cell_flags = af_keep_ref
243  else if (dx > 0.5_dp * refine_max_dx) then
244  where(cell_flags == af_rm_ref) cell_flags = af_keep_ref
245  end if
246 
247  end subroutine refinement_routine
248 
249  !> This routine sets the initial conditions for each box
250  subroutine set_initial_condition(box)
251  type(box_t), intent(inout) :: box
252  integer :: i, j, nc
253  real(dp) :: xy(2), normal_rands(2), vol
254 
255  nc = box%n_cell
256 
257  do j = 0, nc+1
258  do i = 0, nc+1
259  xy = af_r_cc(box, [i,j])
260  vol = (box%dr(1) * box%dr(2))**1.5_dp
261 
262  if (xy(2) > init_y_min .and. xy(2) < init_y_max) then
263  ! Approximate Poisson distribution with normal distribution
264  normal_rands = two_normals(vol * init_density, &
265  sqrt(vol * init_density))
266  ! Prevent negative numbers
267  box%cc(i, j, i_elec) = abs(normal_rands(1)) / vol
268  else
269  box%cc(i, j, i_elec) = 0
270  end if
271  end do
272  end do
273 
274  box%cc(:, :, i_pion) = box%cc(:, :, i_elec)
275  box%cc(:, :, i_phi) = 0 ! Inital potential set to zero
276 
277  end subroutine set_initial_condition
278 
279  !> Return two normal random variates
280  !> http://en.wikipedia.org/wiki/Marsaglia_polar_method
281  function two_normals(mean, sigma) result(rands)
282  real(dp), intent(in) :: mean, sigma
283  real(dp) :: rands(2), sum_sq
284 
285  do
286  call random_number(rands)
287  rands = 2 * rands - 1
288  sum_sq = sum(rands**2)
289  if (sum_sq < 1.0_dp .and. sum_sq > 0.0_dp) exit
290  end do
291  rands = rands * sqrt(-2 * log(sum_sq) / sum_sq)
292  rands = mean + rands * sigma
293  end function two_normals
294 
295  !> This function computes the minimum val of a and b
296  real(dp) function get_min(a, b)
297  real(dp), intent(in) :: a, b
298  get_min = min(a, b)
299  end function get_min
300 
301  !> Get maximum time step based on e.g. CFL criteria
302  real(dp) function max_dt(box)
303  type(box_t), intent(in) :: box
304  real(dp), parameter :: UC_eps0 = 8.8541878176d-12
305  real(dp), parameter :: UC_elem_charge = 1.6022d-19
306  integer :: i, j, nc
307  real(dp) :: fld(2)
308  real(dp) :: dt_cfl, dt_dif, dt_drt
309 
310  nc = box%n_cell
311  dt_cfl = dt_max
312 
313  do j = 1, nc
314  do i = 1, nc
315  fld(1) = 0.5_dp * (box%fc(i, j, 1, f_fld) + &
316  box%fc(i+1, j, 1, f_fld))
317  fld(2) = 0.5_dp * (box%fc(i, j, 2, f_fld) + &
318  box%fc(i, j+1, 2, f_fld))
319 
320  ! The 0.5 is here because of the explicit trapezoidal rule
321  dt_cfl = min(dt_cfl, 0.5_dp / sum(abs(fld * mobility) / box%dr))
322  end do
323  end do
324 
325  ! Dielectric relaxation time
326  dt_drt = uc_eps0 / (uc_elem_charge * mobility * &
327  maxval(box%cc(1:nc, 1:nc, i_elec)) + epsilon(1.0_dp))
328 
329  ! Diffusion condition
330  dt_dif = 0.25_dp * minval(box%dr)**2 / max(diffusion_c, epsilon(1.0_dp))
331 
332  max_dt = min(dt_cfl, dt_drt, dt_dif)
333  end function max_dt
334 
335 
336  !> This function gets the alpha value
337  !>
338  !> Taken from: Spatially hybrid computations for streamer discharges: II. Fully
339  !> 3D simulations, Chao Li, Ute Ebert, Willem Hundsdorfer, J. Comput. Phys.
340  !> 231, 1020-1050 (2012), doi:10.1016/j.jcp.2011.07.023
341  elemental function get_alpha(fld) result(alpha)
342  real(dp), intent(in) :: fld
343  real(dp) :: alpha
344  real(dp), parameter :: c0 = 1.04e1_dp
345  real(dp), parameter :: c1 = 0.601_dp
346  real(dp), parameter :: c2 = 1.86e7_dp
347 
348  alpha = exp(c0) * (abs(fld) * 1e-5_dp)**c1 * exp(-c2 / abs(fld))
349  end function get_alpha
350 
351  ! Compute electric field on the tree. First perform multigrid to get electric
352  ! potential, then take numerical gradient to geld field.
353  subroutine compute_fld(tree, have_guess)
354  type(af_t), intent(inout) :: tree
355  logical, intent(in) :: have_guess
356  real(dp), parameter :: fac = 1.6021766208e-19_dp / 8.8541878176e-12_dp
357  integer :: lvl, i, id, nc
358 
359  nc = tree%n_cell
360 
361  ! Set the source term (rhs)
362  !$omp parallel private(lvl, i, id)
363  do lvl = 1, tree%highest_lvl
364  !$omp do
365  do i = 1, size(tree%lvls(lvl)%leaves)
366  id = tree%lvls(lvl)%leaves(i)
367  tree%boxes(id)%cc(:, :, i_rhs) = fac * (&
368  tree%boxes(id)%cc(:, :, i_elec) - &
369  tree%boxes(id)%cc(:, :, i_pion))
370  end do
371  !$omp end do nowait
372  end do
373  !$omp end parallel
374 
375  ! Perform an FMG cycle (logicals: store residual, first call)
376  call mg_fas_fmg(tree, mg, .false., have_guess)
377 
378  ! Compute field from potential
379  call af_loop_box(tree, fld_from_pot)
380 
381  ! Set the field norm also in ghost cells
382  call af_gc_tree(tree, [i_fld])
383  end subroutine compute_fld
384 
385  ! Compute electric field from electrical potential
386  subroutine fld_from_pot(box)
387  type(box_t), intent(inout) :: box
388  integer :: nc
389  real(dp) :: inv_dr(2)
390 
391  nc = box%n_cell
392  inv_dr = 1 / box%dr
393 
394  box%fc(1:nc+1, 1:nc, 1, f_fld) = inv_dr(1) * &
395  (box%cc(0:nc, 1:nc, i_phi) - box%cc(1:nc+1, 1:nc, i_phi))
396  box%fc(1:nc, 1:nc+1, 2, f_fld) = inv_dr(2) * &
397  (box%cc(1:nc, 0:nc, i_phi) - box%cc(1:nc, 1:nc+1, i_phi))
398 
399  box%cc(1:nc, 1:nc, i_fld) = sqrt(&
400  0.25_dp * (box%fc(1:nc, 1:nc, 1, f_fld) + &
401  box%fc(2:nc+1, 1:nc, 1, f_fld))**2 + &
402  0.25_dp * (box%fc(1:nc, 1:nc, 2, f_fld) + &
403  box%fc(1:nc, 2:nc+1, 2, f_fld))**2)
404  end subroutine fld_from_pot
405 
406  ! Compute the electron fluxes due to drift and diffusion
407  subroutine fluxes_koren(tree, id)
409  type(af_t), intent(inout) :: tree
410  integer, intent(in) :: id
411  real(dp) :: inv_dr(2)
412  real(dp) :: cc(-1:tree%n_cell+2, -1:tree%n_cell+2, 1)
413  real(dp), allocatable :: v(:, :, :), dc(:, :, :)
414  integer :: nc
415 
416  nc = tree%n_cell
417  inv_dr = 1/tree%boxes(id)%dr
418 
419  allocate(v(1:nc+1, 1:nc+1, 2))
420  allocate(dc(1:nc+1, 1:nc+1, 2))
421 
422  call af_gc2_box(tree, id, [i_elec], cc)
423 
424  v = -mobility * tree%boxes(id)%fc(:, :, :, f_fld)
425  dc = diffusion_c
426 
427  call flux_koren_2d(cc(:, :, 1), v, nc, 2)
428  call flux_diff_2d(cc(:, :, 1), dc, inv_dr, nc, 2)
429 
430  tree%boxes(id)%fc(:, :, :, f_elec) = v + dc
431  end subroutine fluxes_koren
432 
433  ! Take average of new and old electron/ion density for explicit trapezoidal rule
434  subroutine average_dens(box)
435  type(box_t), intent(inout) :: box
436  box%cc(:, :, i_elec) = 0.5_dp * (box%cc(:, :, i_elec) + box%cc(:, :, i_elec_old))
437  box%cc(:, :, i_pion) = 0.5_dp * (box%cc(:, :, i_pion) + box%cc(:, :, i_pion_old))
438  end subroutine average_dens
439 
440  ! Advance solution over dt based on the fluxes / source term, using forward Euler
441  subroutine update_solution(box, dt)
442  type(box_t), intent(inout) :: box
443  real(dp), intent(in) :: dt(:)
444  real(dp) :: inv_dr(2), src, sflux, fld
445  real(dp) :: alpha
446  integer :: i, j, nc
447 
448  nc = box%n_cell
449  inv_dr = 1/box%dr
450 
451  do j = 1, nc
452  do i = 1, nc
453  fld = box%cc(i,j, i_fld)
454  alpha = get_alpha(fld)
455  src = box%cc(i, j, i_elec) * mobility * abs(fld) * alpha
456 
457  sflux = inv_dr(1) * (box%fc(i, j, 1, f_elec) - &
458  box%fc(i+1, j, 1, f_elec)) + &
459  inv_dr(2) * (box%fc(i, j, 2, f_elec) - &
460  box%fc(i, j+1, 2, f_elec))
461 
462  box%cc(i, j, i_elec) = box%cc(i, j, i_elec) + (src + sflux) * dt(1)
463  box%cc(i, j, i_pion) = box%cc(i, j, i_pion) + src * dt(1)
464  end do
465  end do
466 
467  end subroutine update_solution
468 
469  !> This fills ghost cells near physical boundaries for the potential
470  subroutine sides_bc_pot(box, nb, iv, coords, bc_val, bc_type)
471  type(box_t), intent(in) :: box
472  integer, intent(in) :: nb
473  integer, intent(in) :: iv
474  real(dp), intent(in) :: coords(NDIM, box%n_cell**(NDIM-1))
475  real(dp), intent(out) :: bc_val(box%n_cell**(NDIM-1))
476  integer, intent(out) :: bc_type
477 
478  select case (nb)
479  case (af_neighb_lowy)
480  bc_type = af_bc_neumann
481  bc_val = applied_field
482  case (af_neighb_highy)
483  bc_type = af_bc_dirichlet
484  bc_val = 0.0_dp
485  case default
486  stop "sides_bc_pot: unspecified boundary"
487  end select
488  end subroutine sides_bc_pot
489 
490 end program simple_streamer
This module contains the core routines of Afivo, namely those that deal with initializing and changin...
Definition: m_af_core.f90:3
Module containing a couple flux schemes for solving hyperbolic problems explicitly,...
This module contains routines related to the filling of ghost cells. Note that corner ghost cells are...
This module contains the geometric multigrid routines that come with Afivo.
This module contains routines for writing output files with Afivo. The Silo format should probably be...
Definition: m_af_output.f90:3
This module contains the routines related to prolongation: going from coarse to fine variables.
Definition: m_af_prolong.f90:3
This module contains routines for restriction: going from fine to coarse variables.
This module contains the basic types and constants that are used in the NDIM-dimensional version of A...
Definition: m_af_types.f90:3
This module contains all kinds of different 'helper' routines for Afivo. If the number of routines fo...
Definition: m_af_utils.f90:4
This module contains wrapper functions to simplify writing Silo files.
Definition: m_write_silo.f90:3